1-calculate-f-x-x-1-x-2-1-e-xt-arctan-t-dt-2-find-lim-x-0-f-x- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 74345 by mathmax by abdo last updated on 22/Nov/19 1)calculatef(x)=∫x+1x2+1e−xtarctan(t)dt2)findlimx→0f(x) Commented by mathmax by abdo last updated on 24/Nov/19 1)f(x)=∫x+1x2+1e−xtarctan(t)dt⇒f(x)=xt=u1x∫x2+xx3+xe−uarctan(ux)du⇒xf(x)=∫x2+xx3+xe−uarctan(ux)dx=byparts[−e−uarctan(ux)]x2+xx3+x+∫x2+xx3+xe−u×1x(1+u2x2)du=e−(x2+x)arctan(x+1)−e−(x3+x)arctan(x2+1)+x∫x2+xx3+xe−ux2+u2du⇒f(x)=1x{e−(x2+x)arctan(x+1)−e−(x3+x)arctan(x2+1)}+∫x2+xx3+xe−ux2+u2du…becontinued… Commented by mathmax by abdo last updated on 24/Nov/19 2)∃cx∈]x+1,x2+1[/f(x)=arctancx∫x+1x2+1e−xtdt=xt=uarctan(cx)∫x2+xx3+xe−udux=1xarctan(cx)[−e−u]x2+xx3+x=arctan(cx)×e−(x2+x)−e−(x3+x)xwehavelimx→0cx=π4alsowehavee−(x2+x)∼1−(x2+x)ande−(x3+x)∼1−(x3+x)⇒e−(x2+x)−e−(x3+x)=1−x2−x−1+x3+x=x3−x2⇒e−(x2+x)−e−(x3+x)x∼x2−x→0(x→0)⇒limx→0f(x)=0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-calculate-U-n-0-e-nx-x-dx-2-find-lim-n-n-U-n-3-determine-nsture-of-the-serie-U-n-Next Next post: calculate-x-2-x-3-x-3-x-2-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.