Menu Close

1-calculate-f-x-x-1-x-2-1-e-xt-arctan-t-dt-2-find-lim-x-0-f-x-




Question Number 74345 by mathmax by abdo last updated on 22/Nov/19
1) calculate f(x)=∫_(x+1) ^(x^2 +1)    e^(−xt) arctan(t)dt  2) find lim_(x→0)    f(x)
1)calculatef(x)=x+1x2+1extarctan(t)dt2)findlimx0f(x)
Commented by mathmax by abdo last updated on 24/Nov/19
1)f(x)=∫_(x+1) ^(x^2 +1)  e^(−xt)  arctan(t)dt  ⇒f(x)=_(xt=u)  (1/x)∫_(x^2 +x) ^(x^3 +x)  e^(−u)  arctan((u/x))du  ⇒xf(x)=∫_(x^2 +x) ^(x^3 +x)  e^(−u)  arctan((u/x))dx =_(by parts)  [−e^(−u)  arctan((u/x))]_(x^2 +x) ^(x^3 +x)   +∫_(x^2 +x) ^(x^3 +x)  e^(−u)   ×(1/(x(1+(u^2 /x^2 ))))du  =e^(−(x^2 +x))  arctan(x+1)−e^(−(x^3 +x))  arctan(x^2 +1)  +x ∫_(x^2 +x) ^(x^3 +x)    (e^(−u) /(x^2 +u^2 ))du ⇒  f(x)=(1/x){ e^(−(x^2 +x))  arctan(x+1)−e^(−(x^3 +x))  arctan(x^2 +1)}  +∫_(x^2 +x) ^(x^3 +x)   (e^(−u) /(x^2  +u^2 ))du  ...be continued...
1)f(x)=x+1x2+1extarctan(t)dtf(x)=xt=u1xx2+xx3+xeuarctan(ux)duxf(x)=x2+xx3+xeuarctan(ux)dx=byparts[euarctan(ux)]x2+xx3+x+x2+xx3+xeu×1x(1+u2x2)du=e(x2+x)arctan(x+1)e(x3+x)arctan(x2+1)+xx2+xx3+xeux2+u2duf(x)=1x{e(x2+x)arctan(x+1)e(x3+x)arctan(x2+1)}+x2+xx3+xeux2+u2dubecontinued
Commented by mathmax by abdo last updated on 24/Nov/19
2) ∃ c_x ∈]x+1,x^2 +1[ /f(x)=arctanc_x  ∫_(x+1) ^(x^2 +1)  e^(−xt)  dt  =_(xt=u)     arctan(c_x ) ∫_(x^2 +x) ^(x^3  +x)  e^(−u) (du/x) =(1/x) arctan(c_x )[−e^(−u) ]_(x^2 +x) ^(x^3 +x)   =arctan(c_x )×((e^(−(x^2 +x)) −e^(−(x^3 +x)) )/x)  we have lim_(x→0) c_x =(π/4)  also we have e^(−(x^2 +x)) ∼1−(x^2 +x)  and e^(−(x^3 +x)) ∼1−(x^3 +x) ⇒  e^(−(x^2 +x)) −e^(−(x^3 +x)) =1−x^2 −x−1+x^3 +x =x^3 −x^2  ⇒  ((e^(−(x^2 +x)) −e^(−(x^3 +x)) )/x) ∼ x^2 −x →0  (x→0) ⇒lim_(x→0)    f(x)=0
2)cx]x+1,x2+1[/f(x)=arctancxx+1x2+1extdt=xt=uarctan(cx)x2+xx3+xeudux=1xarctan(cx)[eu]x2+xx3+x=arctan(cx)×e(x2+x)e(x3+x)xwehavelimx0cx=π4alsowehavee(x2+x)1(x2+x)ande(x3+x)1(x3+x)e(x2+x)e(x3+x)=1x2x1+x3+x=x3x2e(x2+x)e(x3+x)xx2x0(x0)limx0f(x)=0

Leave a Reply

Your email address will not be published. Required fields are marked *