Menu Close

1-calculate-U-n-0-e-nx-x-dx-2-find-lim-n-n-U-n-3-determine-nsture-of-the-serie-U-n-




Question Number 74342 by mathmax by abdo last updated on 22/Nov/19
1) calculate  U_n =∫_0 ^∞   e^(−nx) [x]dx  2) find  lim_(n→+∞)   n U_n   3) determine nsture of the serie Σ U_n
1)calculateUn=0enx[x]dx2)findlimn+nUn3)determinenstureoftheserieΣUn
Commented by mathmax by abdo last updated on 23/Nov/19
1) we have U_n =∫_0 ^∞  e^(−nx) [x]dx =Σ_(k=0) ^∞  ∫_k ^(k+1)  e^(−nx) kdx  =Σ_(k=0) ^∞  k  [−(1/n) e^(−nx) ]_k ^(k+1) =(1/n)Σ_(k=0) ^∞  k{e^(−nk) −e^(−n(k+1)) }  ⇒nU_n =Σ_(k=0) ^∞  k e^(−nk)  −Σ_(k=0) ^∞  k e^(−n(k+1))   =Σ_(k=0) ^∞  k e^(−nk)  −Σ_(k=1) ^∞  (k−1)e^(−nk)   =Σ_(k=1) ^∞  k e^(−nk) −Σ_(k=1) ^∞  k e^(−nk)  +Σ_(k=1) ^∞  e^(−nk)   =Σ_(k=0) ^∞  (e^(−n) )^k −1 =(1/(1−e^(−n) )) −1 =((1−1+e^(−n) )/(1−e^(−n) )) ⇒nU_n =(e^(−n) /(1−e^(−n) ))  =(1/(e^n −1)) ⇒ U_n =(1/(n(e^n −1)))   (n>0)  2)we have U_n =(1/(n(e^n −1))) ⇒U_n ∼(1/(ne^n )) →0 ⇒lim_(n→+∞) U_n =0  3)U_n →0 and decrease so Σ U_n   and ∫_1 ^(+∞)   (dt/(te^t ))  have the same  nature   and ∫_1 ^(+∞)  (e^(−t) /t) dt   converges ⇒Σ U_n  converges.
1)wehaveUn=0enx[x]dx=k=0kk+1enxkdx=k=0k[1nenx]kk+1=1nk=0k{enken(k+1)}nUn=k=0kenkk=0ken(k+1)=k=0kenkk=1(k1)enk=k=1kenkk=1kenk+k=1enk=k=0(en)k1=11en1=11+en1ennUn=en1en=1en1Un=1n(en1)(n>0)2)wehaveUn=1n(en1)Un1nen0limn+Un=03)Un0anddecreasesoΣUnand1+dttethavethesamenatureand1+ettdtconvergesΣUnconverges.
Commented by mathmax by abdo last updated on 23/Nov/19
nU_n ∼ e^(−n)  →0 ⇒lim_(n→+∞)   n U_n =0
nUnen0limn+nUn=0
Answered by mind is power last updated on 22/Nov/19
U_n =Σ_(k=0) ^(+∞) ∫_k ^(k+1) e^(−nx) [x]dx  =Σ_(k=0) ^(+∞) ∫_k ^(k+1) e^(−nx) .k=Σ_(k≥0) ke^(−nx) .−(1/n)  =Σ−(k/n)(e^(−n(k+1)) −e^(−nk) )  =Σ_(k≥0) ((−ke^(−nk) (e^(−n) −1))/n)⇒nU_n =−(e^(−n) −1)(Σ_(k≥1) ke^(−nk) )  =−(e^(−n) −1).(e^(−n) +Σ_(k≥2) ke^(−nk) )  Σke^(−nk) ≤e^(−n) Σke^(−k)   ∀n,k   withe n≥2,k≥2  nk≥n+k  ⇔n(k−1)−k≥0⇔(n−1)(k−1)≥1 clear  ⇒e^(−nk) ≤e^(−n) .e^(−k)   ⇒Σke^(−nk) ≤e^(−n) .(Σke^(−k) )→0  ⇒lim nU_n →0
Un=+k=0kk+1enx[x]dx=+k=0kk+1enx.k=k0kenx.1n=Σkn(en(k+1)enk)=k0kenk(en1)nnUn=(en1)(k1kenk)=(en1).(en+k2kenk)ΣkenkenΣkekn,kwithen2,k2nkn+kn(k1)k0(n1)(k1)1clearenken.ekΣkenken.(Σkek)0limnUn0

Leave a Reply

Your email address will not be published. Required fields are marked *