1-calculate-U-n-0-e-nx-x-dx-2-find-lim-n-n-U-n-3-determine-nsture-of-the-serie-U-n- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 74342 by mathmax by abdo last updated on 22/Nov/19 1)calculateUn=∫0∞e−nx[x]dx2)findlimn→+∞nUn3)determinenstureoftheserieΣUn Commented by mathmax by abdo last updated on 23/Nov/19 1)wehaveUn=∫0∞e−nx[x]dx=∑k=0∞∫kk+1e−nxkdx=∑k=0∞k[−1ne−nx]kk+1=1n∑k=0∞k{e−nk−e−n(k+1)}⇒nUn=∑k=0∞ke−nk−∑k=0∞ke−n(k+1)=∑k=0∞ke−nk−∑k=1∞(k−1)e−nk=∑k=1∞ke−nk−∑k=1∞ke−nk+∑k=1∞e−nk=∑k=0∞(e−n)k−1=11−e−n−1=1−1+e−n1−e−n⇒nUn=e−n1−e−n=1en−1⇒Un=1n(en−1)(n>0)2)wehaveUn=1n(en−1)⇒Un∼1nen→0⇒limn→+∞Un=03)Un→0anddecreasesoΣUnand∫1+∞dttethavethesamenatureand∫1+∞e−ttdtconverges⇒ΣUnconverges. Commented by mathmax by abdo last updated on 23/Nov/19 nUn∼e−n→0⇒limn→+∞nUn=0 Answered by mind is power last updated on 22/Nov/19 Un=∑+∞k=0∫kk+1e−nx[x]dx=∑+∞k=0∫kk+1e−nx.k=∑k⩾0ke−nx.−1n=Σ−kn(e−n(k+1)−e−nk)=∑k⩾0−ke−nk(e−n−1)n⇒nUn=−(e−n−1)(∑k⩾1ke−nk)=−(e−n−1).(e−n+∑k⩾2ke−nk)Σke−nk⩽e−nΣke−k∀n,kwithen⩾2,k⩾2nk⩾n+k⇔n(k−1)−k⩾0⇔(n−1)(k−1)⩾1clear⇒e−nk⩽e−n.e−k⇒Σke−nk⩽e−n.(Σke−k)→0⇒limnUn→0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculatef-0-arctan-x-2-x-2-9-dx-with-real-Next Next post: pi-12-pi-4-cos-2-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.