Menu Close

1-calculte-A-n-0-e-nx-e-x-dx-with-n-integr-and-n-2-2-find-lim-n-n-n-A-n-




Question Number 74498 by mathmax by abdo last updated on 25/Nov/19
1) calculte  A_n =∫_0 ^∞  e^(−nx) [e^x ] dx   with n integr and n≥2  2)find lim_(n→+∞)  n^n  A_n
1)calculteAn=0enx[ex]dxwithnintegrandn22)findlimn+nnAn
Commented by mathmax by abdo last updated on 25/Nov/19
1) A_n =∫_0 ^∞   e^(−nx) [e^x ]dx  changement e^x =t  give  A_n =∫_1 ^(+∞)  e^(−nlnt) [t](dt/t) =∫_1 ^(+∞) (([t])/t^(n+1) )dt =Σ_(k=1) ^∞  ∫_k ^(k+1)  (k/t^(n+1) )dt  =Σ_(k=1) ^∞ k ∫_k ^(k+)   t^(−n−1) dt =Σ_(k=1) ^∞ k[−(1/n)t^(−n) ]_k ^(k+1)   =Σ_(k=1) ^∞ (k/n){(1/k^n )−(1/k^(n+1) )} =(1/n)Σ_(k=1) ^∞  (1/k^(n−1) )−(1/n)Σ_(k=1) ^∞  (1/k^n )  we have ξ(x)=Σ_(k=1) ^∞  (1/k^x )   (x>1) ⇒A_n =(1/n)ξ(n−1)−(1/n)ξ(n)  2) we have n^n A_n =n^(n−1) {ξ(n−1)−ξ(n)} ⇒n^n  A_n ∼c n^(n−1)  ⇒  lim_(n→+∞)  n^n  A_n =∞
1)An=0enx[ex]dxchangementex=tgiveAn=1+enlnt[t]dtt=1+[t]tn+1dt=k=1kk+1ktn+1dt=k=1kkk+tn1dt=k=1k[1ntn]kk+1=k=1kn{1kn1kn+1}=1nk=11kn11nk=11knwehaveξ(x)=k=11kx(x>1)An=1nξ(n1)1nξ(n)2)wehavennAn=nn1{ξ(n1)ξ(n)}nnAncnn1limn+nnAn=
Answered by mind is power last updated on 25/Nov/19
A_n =Σ_(k≥1) ∫_(ln(k)) ^(ln(k+1)) e^(−nx) [e^x ]dx  =Σ_(k≥1) ∫_(ln(k)) ^(ln(k+1)) .ke^(−nx) dx  =Σ_(k≥1) ((−k)/n)[e^(−nx) ]_(ln(k)) ^(ln(k+1)) =Σ_(k≥1) ((−k)/(n(k+1)^n ))+(k/(nk^n ))  =Σ_(k≥1) {((−1)/(n(k+1)^(n−1) ))+(1/(nk^(n−1) ))+(1/(n(k+1)^n ))}  =(1/n)+Σ_(k≥1) (1/(n(k+1)^n ))=A_n   n^n An≥n^(n−1) →+∞
An=k1ln(k)ln(k+1)enx[ex]dx=k1ln(k)ln(k+1).kenxdx=k1kn[enx]ln(k)ln(k+1)=k1kn(k+1)n+knkn=k1{1n(k+1)n1+1nkn1+1n(k+1)n}=1n+k11n(k+1)n=AnnnAnnn1+

Leave a Reply

Your email address will not be published. Required fields are marked *