Menu Close

1-cosx-1-sinx-8-find-the-value-of-x-




Question Number 72492 by petrochengula last updated on 29/Oct/19
(1/(cosx))+(1/(sinx))=8  find the value of x
1cosx+1sinx=8findthevalueofx
Commented by petrochengula last updated on 29/Oct/19
help please
helpplease
Answered by behi83417@gmail.com last updated on 29/Oct/19
sinx+cosx=8sinx.cosx  (sinx+cosx)^2 =(8sinx.cosx)^2   1+2sinx.cosx=64sin^2 xcos^2 x   [let:sinxcosx=y]  65y^2 =y^2 +2y+1=(y+1)^2   ⇒(√(65))y=±(2y+1)⇒ { ((y=(1/( (√(65))−2)))),((y=((−1)/( (√(65))+2)))) :}  1)sinx.cosx=(1/( (√(65))−2))⇒sin2x=(2/( (√(65))−2))  ⇒x=kπ±(1/2)sin^(−1) [(2/( (√(65))−2))]  (k∈z)  2)sinx.cosx=((−1)/( (√(65))+2))⇒sin2x=((−2)/( (√(65))+2))  ⇒x=lπ±(1/2)sin^(−1) [((−2)/( (√(65))+2))]    (l∈z)
sinx+cosx=8sinx.cosx(sinx+cosx)2=(8sinx.cosx)21+2sinx.cosx=64sin2xcos2x[let:sinxcosx=y]65y2=y2+2y+1=(y+1)265y=±(2y+1){y=1652y=165+21)sinx.cosx=1652sin2x=2652x=kπ±12sin1[2652](kz)2)sinx.cosx=165+2sin2x=265+2x=lπ±12sin1[265+2](lz)
Commented by petrochengula last updated on 29/Oct/19
thanks
thanks
Answered by Tanmay chaudhury last updated on 29/Oct/19
sinx+cosx=4(2sinxcosx)  (√(1+sin2x)) =4sin2x  1+a=16a^2 →16a^2 −a−1=0  a=((1±(√(1−4.16.(−1))))/(2×16))=((1±(√(65)))/(32))  (√(65)) ≈8.06   a=((9.06)/(32)),((−7.06)/(32))  a≈0.28,−0.22  sin2x=0.28=sin(0.284)   [note angle in radian  2x=0.284→x=0.142  took help of calculator
sinx+cosx=4(2sinxcosx)1+sin2x=4sin2x1+a=16a216a2a1=0a=1±14.16.(1)2×16=1±6532658.06a=9.0632,7.0632a0.28,0.22sin2x=0.28=sin(0.284)[noteangleinradian2x=0.284x=0.142tookhelpofcalculator
Commented by petrochengula last updated on 29/Oct/19
thanks
thanks
Commented by Tanmay chaudhury last updated on 29/Oct/19
most welcome...
mostwelcome
Answered by MJS last updated on 29/Oct/19
x=2arctan t ⇒ cos x =((1−t^2 )/(1+t^2 )); sin x =((2t)/(1+t^2 ))  ((1+t^2 )/(1−t^2 ))+((1+t^2 )/(2t))=8  transforming ⇒  t^4 −18t^3 +14t−1=0  we can exactly solve this  (t^2 −(9+(√(65)))t−(8+(√(65))))(t^2 −(9−(√(65)))t−(8r−(√(65))))=0  t_(1, 2) =((9+(√(65)))/2)±((√(178+22(√(65))))/2)  t_(3, 4) =((9−(√(65)))/2)±((√(178−22(√(65))))/2)  x_i =2πn+2arctan t with n∈Z  ⇒  x_1 ≈−1.45953+2πn  x_2 ≈3.03033+2πn  x_3 ≈.143562+2πn  x_4 ≈1.42723+2πn
x=2arctantcosx=1t21+t2;sinx=2t1+t21+t21t2+1+t22t=8transformingt418t3+14t1=0wecanexactlysolvethis(t2(9+65)t(8+65))(t2(965)t(8r65))=0t1,2=9+652±178+22652t3,4=9652±17822652xi=2πn+2arctantwithnZx11.45953+2πnx23.03033+2πnx3.143562+2πnx41.42723+2πn

Leave a Reply

Your email address will not be published. Required fields are marked *