1-decompose-F-x-1-x-1-5-2x-1-4-2-find-1-F-x-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 133957 by mathmax by abdo last updated on 25/Feb/21 1)decomposeF(x)=1(x+1)5(2x−1)42)find∫1∞F(x)dx Answered by Olaf last updated on 25/Feb/21 F(x)=1(x+1)5(2x−1)4F(x)=181(x+1)5+8243(x+1)4+40729(x+1)3+1602187(x+1)2+5706561(x+1)+2243(x−12)4−20729(x−12)3+40729(x−12)2−5606561(x−12)∫1∞F(x)dx=[−1324(x+1)4−8729(x+1)3−20729(x+1)2−1602187(x+1)+5706561ln(x+1)−2729(x−12)3+10729(x−12)2−40729(x−12)−5606561ln(x−12)]1∞=27051139968−11206561ln2 Commented by mathmax by abdo last updated on 26/Feb/21 thankyousir Answered by mathmax by abdo last updated on 27/Feb/21 2)Φ=∫1∞dx(x+1)5(2x−1)4⇒Φ=∫1∞dx(x+12x−1)5(2x−1)9wedothechangementx+12x−1=t⇒x+1=2tx−t⇒(1−2t)x=−1−t⇒x=−1−t1−2t=t+12t−1⇒dxdt=2t−1−2(t+1)(2t−1)2=−3(2t−1)2and2x−1=2t+22t−1−1=2t+2−2t+12t−1=32t−1⇒Φ=∫2121t5(32t−1)9−3dt(2t−1)2=138∫122(2t−1)9(2t−1)2t5dt=138∫122(2t−1)7t5dt⇒38Φ=∫1221t5∑k=07C7k(2t)k(−1)7−k=−∑k=072k(−1)kC7k∫122tk−5dt=−∑k=0andk≠47(−2)kC7k[1k−4tk−4]122−(−2)4C74[ln∣t∣]122=−∑k=0andk≠47(−2)kC7kk−4(2k−4−12k−4)−24C74(2ln2)⇒Φ=−138{∑k=0andk≠47(−2)kC7kk−4(2k−4−12k−4)+25ln(2)C74} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-68422Next Next post: Question-68425 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.