Menu Close

1-decompose-F-x-1-x-1-5-2x-1-4-2-find-1-F-x-dx-




Question Number 133957 by mathmax by abdo last updated on 25/Feb/21
1)decompose  F(x)=(1/((x+1)^5 (2x−1)^4 ))  2) find ∫_1 ^∞  F(x)dx
1)decomposeF(x)=1(x+1)5(2x1)42)find1F(x)dx
Answered by Olaf last updated on 25/Feb/21
F(x) = (1/((x+1)^5 (2x−1)^4 ))  F(x) = (1/(81(x+1)^5 ))+(8/(243(x+1)^4 ))+((40)/(729(x+1)^3 ))  +((160)/(2187(x+1)^2 ))+((570)/(6561(x+1)))+(2/(243(x−(1/2))^4 ))  −((20)/(729(x−(1/2))^3 ))+((40)/(729(x−(1/2))^2 ))−((560)/(6561(x−(1/2))))    ∫_1 ^∞ F(x)dx = [−(1/(324(x+1)^4 ))−(8/(729(x+1)^3 ))  −((20)/(729(x+1)^2 ))−((160)/(2187(x+1)))+((570)/(6561))ln(x+1)  −(2/(729(x−(1/2))^3 ))+((10)/(729(x−(1/2))^2 ))−((40)/(729(x−(1/2))))  −((560)/(6561))ln(x−(1/2))]_1 ^∞   = ((27051)/(139968))−((1120)/(6561))ln2
F(x)=1(x+1)5(2x1)4F(x)=181(x+1)5+8243(x+1)4+40729(x+1)3+1602187(x+1)2+5706561(x+1)+2243(x12)420729(x12)3+40729(x12)25606561(x12)1F(x)dx=[1324(x+1)48729(x+1)320729(x+1)21602187(x+1)+5706561ln(x+1)2729(x12)3+10729(x12)240729(x12)5606561ln(x12)]1=2705113996811206561ln2
Commented by mathmax by abdo last updated on 26/Feb/21
thank you sir
thankyousir
Answered by mathmax by abdo last updated on 27/Feb/21
2)Φ=∫_1 ^∞  (dx/((x+1)^5 (2x−1)^4 )) ⇒Φ =∫_1 ^∞  (dx/((((x+1)/(2x−1)))^5 (2x−1)^9 ))  we do the changement ((x+1)/(2x−1))=t ⇒x+1=2tx−t ⇒(1−2t)x=−1−t ⇒  x=((−1−t)/(1−2t)) =((t+1)/(2t−1)) ⇒(dx/dt)=((2t−1−2(t+1))/((2t−1)^2 ))=((−3)/((2t−1)^2 )) and  2x−1 =((2t+2)/(2t−1))−1 =((2t+2−2t+1)/(2t−1)) =(3/(2t−1)) ⇒  Φ =∫_2 ^(1/2)  (1/(t^5 ((3/(2t−1)))^9 ))((−3dt)/((2t−1)^2 )) =(1/3^8 )∫_(1/2) ^2  (((2t−1)^9 )/((2t−1)^2 t^5 ))dt  =(1/3^8 )∫_(1/2) ^2  (((2t−1)^7 )/t^5 )dt ⇒3^8  Φ =∫_(1/2) ^2 (1/t^5 )Σ_(k=0) ^7  C_7 ^k (2t)^k (−1)^(7−k)   =−Σ_(k=0) ^7  2^k (−1)^k  C_7 ^k ∫_(1/2) ^2  t^(k−5)  dt  =−Σ_(k=0 and k≠4) ^7  (−2)^k  C_7 ^k  [(1/(k−4))t^(k−4) ]_(1/2) ^2 −(−2)^4  C_7 ^4 [ln∣t∣]_(1/2) ^2   =−Σ_(k=0 and k≠4) ^7  (−2)^k  (C_7 ^k /(k−4))(2^(k−4) −(1/2^(k−4) ))−2^4  C_7 ^4 (2ln2) ⇒  Φ =−(1/3^8 ){ Σ_(k=0 and k≠4) ^7  (((−2)^k  C_7 ^k )/(k−4))(2^(k−4) −(1/2^(k−4) ))+2^5 ln(2)C_7 ^4 }
2)Φ=1dx(x+1)5(2x1)4Φ=1dx(x+12x1)5(2x1)9wedothechangementx+12x1=tx+1=2txt(12t)x=1tx=1t12t=t+12t1dxdt=2t12(t+1)(2t1)2=3(2t1)2and2x1=2t+22t11=2t+22t+12t1=32t1Φ=2121t5(32t1)93dt(2t1)2=138122(2t1)9(2t1)2t5dt=138122(2t1)7t5dt38Φ=1221t5k=07C7k(2t)k(1)7k=k=072k(1)kC7k122tk5dt=k=0andk47(2)kC7k[1k4tk4]122(2)4C74[lnt]122=k=0andk47(2)kC7kk4(2k412k4)24C74(2ln2)Φ=138{k=0andk47(2)kC7kk4(2k412k4)+25ln(2)C74}

Leave a Reply

Your email address will not be published. Required fields are marked *