Menu Close

1-decompose-inside-R-x-the-fraction-F-x-1-x-2-3-x-1-4-2-calculate-2-F-x-dx-3-calculate-2-F-2-x-dx-




Question Number 135892 by mathmax by abdo last updated on 16/Mar/21
1)decompose inside R(x) the fraction F(x)=(1/((x+2)^3 (x−1)^4 ))  2) calculate ∫_2 ^∞  F(x)dx  3) calculate ∫_2 ^∞  F^2 (x)dx
1)decomposeinsideR(x)thefractionF(x)=1(x+2)3(x1)42)calculate2F(x)dx3)calculate2F2(x)dx
Answered by mathmax by abdo last updated on 17/Mar/21
1)F(x)=Σ_(i=1) ^3  (a_i /((x+2)^i ))+Σ_(i=1) ^4  (b_i /((x−1)^i ))    whst s a_i ?  let find D_3 (−2) for f(x)=(x−1)^(−4)   f(x)=f(−2) +((x+2)/(1!))f^′ (−2)+(((x+2)^2 )/(2!))f^((2)) (−2)+(((x+2)^3 )/(3!))f^((3)) (−2)+(((x+2)^4 )/(4!))ξ(x)  f(−2)=(−3)^(−4)  ,f^′ (x)=−4(x−1)^(−5)  ⇒f^′ (−2)=−4(−3)^(−5)   f^((2)) (x)=20(x−1)^(−6)  ⇒f^((2)) (−2)=20(−3)^(−6)   f^((3)) (x)=−120(x−1)^(−7) ⇒f^((3)) (−2)=−120(−3)^(−7)  ⇒  f(x)=(−3)^(−4)  −4(−3)^(−5) (x+2)+((20(−3)^(−6) )/2)(x+2)^2 −((120(−3)^(−7) )/(3!))(x+2)^3   +(((x+2)^4 )/(4!))ξ(x) ⇒  ((f(x))/((x+2)^3 ))=(((−3)^(−4) )/((x+2)^3 ))−((4(−3)^(−5) )/((x+2)^2 )) +((10(−3)^(−6) )/((x+2))) +... ⇒a_1 =10.(−3)^(−6)   a_2 =−4(−3)^(−5)   ,a_3 =(−3)^(−4)  let find b_i    we find D_3 (1) for g(x)=(x+2)^(−3)   g(x)=g(1)+((x−1)/(1!))g^′ (1) +(((x−1)^2 )/(2!))g^((2)) (1) +(((x−1)^3 )/(3!))g^((3)) (1) +(((x−1)^4 )/(4!))δ(x)  g(1)=3^(−3)     , g^′ (x)=−3(x+2)^(−4)  ⇒g^′ (1)=−3.3^(−4)   g^((2)) (x)=12(x+2)^(−5)  ⇒g^((2)) (1)=12.3^(−5)  g^((3)) (x)=12.5(x+2)^(−6)  ⇒g^((3)) (1)=60.3^(−6)   g(x)=3^(−3)  −3.3^(−4) (x−1)+((12.3^(−5) )/2)(x−1)^2 +((60.3^(−6) )/(3!))(x−1)^3  +...  =(1/(27))−(1/(27))(x−1) +(2/(81))(x−1)^2 +10.3^(−6) (x−1)^3  +(((x−1)^4 )/(4!))δ(x)  ⇒((g(x))/((x−1)^4 ))=(1/(27(x−1)^4 ))−(1/(27(x−1)^3 ))+(2/(81(x−1)^2 ))+((10.3^(−6) )/(x−1)) ⇒  b_1 =10.3^(−6)  , b_2 =(2/(81))  ,b_3 =−(1/(27)) ,b_4 =(1/(27)) ⇒
1)F(x)=i=13ai(x+2)i+i=14bi(x1)iwhstsai?letfindD3(2)forf(x)=(x1)4f(x)=f(2)+x+21!f(2)+(x+2)22!f(2)(2)+(x+2)33!f(3)(2)+(x+2)44!ξ(x)f(2)=(3)4,f(x)=4(x1)5f(2)=4(3)5f(2)(x)=20(x1)6f(2)(2)=20(3)6f(3)(x)=120(x1)7f(3)(2)=120(3)7f(x)=(3)44(3)5(x+2)+20(3)62(x+2)2120(3)73!(x+2)3+(x+2)44!ξ(x)f(x)(x+2)3=(3)4(x+2)34(3)5(x+2)2+10(3)6(x+2)+a1=10.(3)6a2=4(3)5,a3=(3)4letfindbiwefindD3(1)forg(x)=(x+2)3g(x)=g(1)+x11!g(1)+(x1)22!g(2)(1)+(x1)33!g(3)(1)+(x1)44!δ(x)g(1)=33,g(x)=3(x+2)4g(1)=3.34g(2)(x)=12(x+2)5g(2)(1)=12.35g(3)(x)=12.5(x+2)6g(3)(1)=60.36g(x)=333.34(x1)+12.352(x1)2+60.363!(x1)3+=127127(x1)+281(x1)2+10.36(x1)3+(x1)44!δ(x)g(x)(x1)4=127(x1)4127(x1)3+281(x1)2+10.36x1b1=10.36,b2=281,b3=127,b4=127
Answered by mathmax by abdo last updated on 17/Mar/21
2) ∫_2 ^∞  (dx/((x+2)^3 (x−1)^4 )) =∫_2 ^∞  (dx/((((x−1)/(x+2)))^4 (x+2)^7 )) we do the changement  ((x−1)/(x+2))=t ⇒x−1=tx+2t  ⇒(1−t)x=1+2t ⇒x=((1+2t)/(1−t)) ⇒  (dx/dt)=((2(1−t)−(1+2t)(−1))/((1−t)^2 ))=((2−2t+1+2t )/((1−t)^2 ))=(3/((1−t)^2 ))  x+2=((1+2t)/(1−t))+2=((1+2t+2−2t)/(1−t))=(3/(1−t)) ⇒  I=∫_(1/4) ^1  (1/(t^4 ((3/(1−t)))^7 ))((3dt)/((1−t)^2 )) =(1/3^6 )∫_(1/4) ^1 (((1−t)^7 )/(t^4 (1−t)^2 ))dt  =(1/3^6 )∫_(1/4) ^1  (((1−t)^5 )/t^4 )dt =−(1/3^6 )∫_(1/4) ^1  ((Σ_(k=0) ^5  C_5 ^k  t^k (−1)^(5−k) )/t^4 )dt  =(1/3^6 ) Σ_(k=0) ^5  (−1)^k  C_5 ^k  ∫_(1/4) ^1  t^(k−4)  dt  =(1/3^6 )Σ_(k=0 and k≠3) ^5  (−1)^k  C_5 ^k  [(1/(k−3))t^(k−3) ]_(1/4) ^1  −(1/3^6 )C_5 ^3 [ln∣t∣]_(1/4) ^1   =(1/3^6 )Σ_(k=0 and k≠3) ^5  (((−1)^k  C_5 ^k )/(k−3))(1−(1/4^(k−3) ))+(1/3^6 )C_5 ^3 (2ln(2))
2)2dx(x+2)3(x1)4=2dx(x1x+2)4(x+2)7wedothechangementx1x+2=tx1=tx+2t(1t)x=1+2tx=1+2t1tdxdt=2(1t)(1+2t)(1)(1t)2=22t+1+2t(1t)2=3(1t)2x+2=1+2t1t+2=1+2t+22t1t=31tI=1411t4(31t)73dt(1t)2=136141(1t)7t4(1t)2dt=136141(1t)5t4dt=136141k=05C5ktk(1)5kt4dt=136k=05(1)kC5k141tk4dt=136k=0andk35(1)kC5k[1k3tk3]141136C53[lnt]141=136k=0andk35(1)kC5kk3(114k3)+136C53(2ln(2))
Commented by mathmax by abdo last updated on 17/Mar/21
let Φ=∫_2 ^∞  F^2 (x)dx ⇒Φ =∫_2 ^∞  (dx/((x+2)^6 (x−1)^8 ))  =∫_2 ^∞  (dx/((((x−1)/(x+2)))^8 (x+2)^(14) ))  chamgement ((x−1)/(x+2))=t give  Φ =∫_(1/4) ^1  (1/(t^8 ((3/(1−t)))^(14) ))((3dt)/((1−t)^2 )) =(1/3^(13) ) ∫_(1/4) ^1  (((1−t)^(12) )/t^8 )dt  =(1/3^(13) )∫_(1/4) ^1  (1/t^8 )Σ_(k=0) ^(12)  C_(12) ^k  t^k (−1)^(12−k)  dt  =(1/3^(13) )Σ_(k=0) ^(12)  (−1)^k  C_(12) ^k  ∫_(1/4) ^1  t^(k−8)  dt  =(1/3^(13) ) Σ_(k=0 and k≠7) ^(12)  (−1)^k  C_(12) ^k  [(1/(k−7))t^(k−7) ]_(1/4) ^1 − (1/3^(13) )C_(12) ^7  [ln∣t∣]_(1/4) ^1   Φ=(1/3^(13) )Σ_(k=0 and k≠7) ^(12)  (((−1)^k  C_(12) ^k )/(k−7))(1−(1/4^(k−7) ))+(1/3^(13) )C_(12) ^7 (2ln(2))
letΦ=2F2(x)dxΦ=2dx(x+2)6(x1)8=2dx(x1x+2)8(x+2)14chamgementx1x+2=tgiveΦ=1411t8(31t)143dt(1t)2=1313141(1t)12t8dt=13131411t8k=012C12ktk(1)12kdt=1313k=012(1)kC12k141tk8dt=1313k=0andk712(1)kC12k[1k7tk7]1411313C127[lnt]141Φ=1313k=0andk712(1)kC12kk7(114k7)+1313C127(2ln(2))

Leave a Reply

Your email address will not be published. Required fields are marked *