Menu Close

1-dx-e-x-2-x-




Question Number 142528 by mohammad17 last updated on 01/Jun/21
∫_1 ^( ∞)  (dx/(e^x −2^x ))
$$\int_{\mathrm{1}} ^{\:\infty} \:\frac{{dx}}{{e}^{{x}} −\mathrm{2}^{{x}} } \\ $$
Answered by mathmax by abdo last updated on 02/Jun/21
Φ=∫_1 ^∞  (dx/(e^x −2^x )) ⇒Φ=∫_1 ^∞  (e^(−x) /(1−2^x e^(−x) ))dx =∫_1 ^∞  ((e^(−x) dx)/(1−((2/e))^x ))  (∣(2/e)∣<1)  =∫_1 ^∞  e^(−x)  Σ_(n=0) ^∞  ((2/e))^(nx)  dx =Σ_(n=0) ^∞  ∫_1 ^∞  e^(−x)  2^(nx)  e^(−nx)  dx  =Σ_(n=0) ^∞  ∫_1 ^∞  e^(−(n+1)x)  2^(nx) dx =Σ_(n=0) ^∞  ∫_1 ^∞ e^(−(n+1)x) e^(nxlog2)  ex  =Σ_(n=0) ^∞  ∫_1 ^∞  e^((nlog2−n−1)x) dx =Σ_(n=0) ^∞  [(1/(nlog2−n−1))e^((nlog2−n−1)x) ]_1 ^∞   =−Σ_(n=0) ^∞  (1/(nlog2−n−1)) =Σ_(n=0) ^∞  (1/(n+1−nlog2))  ⇒Φ=1+(1/(2−log2))+(1/(3−2log2))+(1/(4−3log2))+....
$$\Phi=\int_{\mathrm{1}} ^{\infty} \:\frac{\mathrm{dx}}{\mathrm{e}^{\mathrm{x}} −\mathrm{2}^{\mathrm{x}} }\:\Rightarrow\Phi=\int_{\mathrm{1}} ^{\infty} \:\frac{\mathrm{e}^{−\mathrm{x}} }{\mathrm{1}−\mathrm{2}^{\mathrm{x}} \mathrm{e}^{−\mathrm{x}} }\mathrm{dx}\:=\int_{\mathrm{1}} ^{\infty} \:\frac{\mathrm{e}^{−\mathrm{x}} \mathrm{dx}}{\mathrm{1}−\left(\frac{\mathrm{2}}{\mathrm{e}}\right)^{\mathrm{x}} }\:\:\left(\mid\frac{\mathrm{2}}{\mathrm{e}}\mid<\mathrm{1}\right) \\ $$$$=\int_{\mathrm{1}} ^{\infty} \:\mathrm{e}^{−\mathrm{x}} \:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(\frac{\mathrm{2}}{\mathrm{e}}\right)^{\mathrm{nx}} \:\mathrm{dx}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{1}} ^{\infty} \:\mathrm{e}^{−\mathrm{x}} \:\mathrm{2}^{\mathrm{nx}} \:\mathrm{e}^{−\mathrm{nx}} \:\mathrm{dx} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{1}} ^{\infty} \:\mathrm{e}^{−\left(\mathrm{n}+\mathrm{1}\right)\mathrm{x}} \:\mathrm{2}^{\mathrm{nx}} \mathrm{dx}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{1}} ^{\infty} \mathrm{e}^{−\left(\mathrm{n}+\mathrm{1}\right)\mathrm{x}} \mathrm{e}^{\mathrm{nxlog2}} \:\mathrm{ex} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{1}} ^{\infty} \:\mathrm{e}^{\left(\mathrm{nlog2}−\mathrm{n}−\mathrm{1}\right)\mathrm{x}} \mathrm{dx}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left[\frac{\mathrm{1}}{\mathrm{nlog2}−\mathrm{n}−\mathrm{1}}\mathrm{e}^{\left(\mathrm{nlog2}−\mathrm{n}−\mathrm{1}\right)\mathrm{x}} \right]_{\mathrm{1}} ^{\infty} \\ $$$$=−\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{nlog2}−\mathrm{n}−\mathrm{1}}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}−\mathrm{nlog2}} \\ $$$$\Rightarrow\Phi=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}−\mathrm{log2}}+\frac{\mathrm{1}}{\mathrm{3}−\mathrm{2log2}}+\frac{\mathrm{1}}{\mathrm{4}−\mathrm{3log2}}+…. \\ $$
Commented by mohammad17 last updated on 02/Jun/21
thank you sir cqn you complete
$${thank}\:{you}\:{sir}\:{cqn}\:{you}\:{complete} \\ $$
Commented by Mathspace last updated on 02/Jun/21
this is the answer by series...
$${this}\:{is}\:{the}\:{answer}\:{by}\:{series}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *