1-e-1-1-x-2-1-x-1-2-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 137940 by benjo_mathlover last updated on 08/Apr/21 ∫1e1+1x2+1(x+1)2dx=? Answered by john_santu last updated on 08/Apr/21 J=∫1ex2+1x2+1(x+1)2dxJ=∫1e(x2+1)(x+1)2+x2x2(x+1)2dxJ=∫1e(x2+x+1)2x2(x+1)2dxJ=∫1ex2+x+1x(x+1)dxJ=∫1e(1+1x−1x+1)dx=[x+ln∣x∣−ln∣x+1∣]1e=(e+1−ln(e+1))−(1−ln2)=e+ln(2e+1) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Determine-the-term-independent-of-x-in-the-expansion-x-1-x-2-3-x-1-3-1-x-1-x-x-1-2-10-Next Next post: 0-x-1-2-x-1-ln-2-x-1-dx-pi-2ln-2-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.