Menu Close

1-f-x-0-1-x-2t-dt-0-3-f-x-dx-2-f-x-x-2-1-x-dt-t-3-3t-2-3t-f-2019-1-




Question Number 138819 by qaz last updated on 18/Apr/21
(1)::f(x)=∫_0 ^1 ∣x−2t∣dt,           ∫_0 ^3 f(x)dx=?  −−−−−−−−−−−−−−−−−−−  (2)::f(x)=x^2 ∙∫_1 ^x (dt/(t^3 −3t^2 +3t)),             f^((2019)) (1)=?
(1)::f(x)=01x2tdt,03f(x)dx=?(2)::f(x)=x21xdtt33t2+3t,f(2019)(1)=?
Answered by TheSupreme last updated on 18/Apr/21
∫_0 ^1 ∣x−2t∣dt=  x<0 → ∫_0 ^1 ∣x−2t∣=∫_0 ^1 −x+2t dt = −xt+t^2 =1−x  x>2 → ∫_0 ^1 ∣x−2t∣=∫_0 ^1 x−2tdt=xt−t^2 =x−1  0<x<2  ∫_0 ^1 ∣x−2t∣dt=∫_0 ^(x/2) x−2tdt + ∫_(x/2) ^1 −x+2tdt=  =xt−t^2 ∣_0 ^(x/2) +(−xt+t^2 )∣_(x/2) ^1 =(x^2 /2)−(x^2 /4)−x+1+(x^2 /2)−(x^2 /4)= (x^2 /2)−x+1
01x2tdt=x<001x2t∣=01x+2tdt=xt+t2=1xx>201x2t∣=01x2tdt=xtt2=x10<x<201x2tdt=0x2x2tdt+x21x+2tdt==xtt20x2+(xt+t2)x21=x22x24x+1+x22x24=x22x+1
Answered by mathmax by abdo last updated on 18/Apr/21
f(x)=∫_0 ^1 ∣x−2t∣dt =_(2t=u)    (1/2)∫_0 ^2 ∣x−u∣du  ⇒2f(x)=∫_0 ^x ∣x−u∣du +∫_x ^2 ∣x−u∣du =∫_0 ^x (x−u)du+∫_x ^2 (u−x)du  =[xu−(u^2 /2)]_(u=0) ^x  +[(u^2 /2)−xu]_x ^2 =x^2 −(x^2 /2) +2−2x−(x^2 /2)+x^2   =2x^2 −x^2 +2−2x =x^2 −2x+2 ⇒f(x)=(x^2 /2)−x+1 ⇒  ∫_0 ^3 f(x)dx=∫_0 ^3 ((x^2 /2)−x+1)dx =[(x^3 /6)−(x^2 /2)+x]_0 ^3 =((27)/6)−(9/2)+3=...
f(x)=01x2tdt=2t=u1202xudu2f(x)=0xxudu+x2xudu=0x(xu)du+x2(ux)du=[xuu22]u=0x+[u22xu]x2=x2x22+22xx22+x2=2x2x2+22x=x22x+2f(x)=x22x+103f(x)dx=03(x22x+1)dx=[x36x22+x]03=27692+3=
Answered by mathmax by abdo last updated on 18/Apr/21
f(x)=x^2 ∫_1 ^x  (dt/(t(t^2 −3t+3)))   let decompose F(t)=(1/(t(t^2 −3t+3)))  ⇒F(t)=(a/t)+((bt+c)/(t^2  −3t+3))  we have a=(1/3)  lim_(t→+∞) tF(t)=0 =a+b ⇒b=−(1/3)  F(1)=1 =a+b+c ⇒c=1−0=1 ⇒F(x)=(1/(3t))+((−(t/3)+1)/(t^2 −3t+3)) ⇒  ∫_1 ^x  F(t)dt =∫_1 ^x  (dt/(3t))−(1/6)∫_1 ^x  ((2t−3−3)/(t^2 −3t+3))dt  =(1/3)log∣x∣−(1/6)[log(t^2 −3t+3)]_1 ^x +(3/6)∫_1 ^x  (dt/(t^2 −3t+3))  =(1/3)log∣x∣−(1/6)log(x^2 −3x+3)+(3/6)∫_1 ^x  (dt/(t^2 −3t+3))  ∫_1 ^x  (dt/(t^2 −3t+3)) =∫_1 ^x (dt/(t^2 −2(3/2)t+(9/4)+3−(9/4)))  =∫_1 ^x  (dt/((t−(3/2))^2  +(3/4)))=_(t−(3/2)=((√3)/2)y) (4/3)  ∫_(−(1/( (√3)))) ^((2x−3)/( (√3)))     (1/(y^2  +1)).((√3)/2)dy  =(2/( (√3)))[arctany]_(−(1/( (√3)))) ^((2x−3)/( (√3)))    =(2/( (√3)))(arctan(((2x−3)/( (√3))))+arctan((1/( (√3)))))  ⇒∫_1 ^x  F(x)dx=(1/3)log∣x∣−(1/6)log(x^2 −3x+3)  +(1/( (√3)))(arctan(((2x−3)/( (√3))))+(π/6)) ⇒  f(x)=(1/3)x^2 log∣x∣−(x^2 /6)log(x^2 −3x+3)+(x^2 /( (√3)))(arctan(((2x−3)/( (√3))))+(π/6))  rest to calculate f^((n)) (x)....be continued....
f(x)=x21xdtt(t23t+3)letdecomposeF(t)=1t(t23t+3)F(t)=at+bt+ct23t+3wehavea=13limt+tF(t)=0=a+bb=13F(1)=1=a+b+cc=10=1F(x)=13t+t3+1t23t+31xF(t)dt=1xdt3t161x2t33t23t+3dt=13logx16[log(t23t+3)]1x+361xdtt23t+3=13logx16log(x23x+3)+361xdtt23t+31xdtt23t+3=1xdtt2232t+94+394=1xdt(t32)2+34=t32=32y43132x331y2+1.32dy=23[arctany]132x33=23(arctan(2x33)+arctan(13))1xF(x)dx=13logx16log(x23x+3)+13(arctan(2x33)+π6)f(x)=13x2logxx26log(x23x+3)+x23(arctan(2x33)+π6)resttocalculatef(n)(x).becontinued.
Commented by qaz last updated on 19/Apr/21
it′s just a fill−in−the−blanks exercise,  i dont think of that so complicate.
itsjustafillintheblanksexercise,idontthinkofthatsocomplicate.
Answered by ajfour last updated on 19/Apr/21
f(x)=2∫_0 ^( 1) (√((t−(x/2))^2 ))dx  =(t−(x/2))(√((t−(x/2))^2 )) ∣_0 ^1   =(1−(x/2))(√((1−(x/2))^2 ))+(x/2)(√(x^2 /4))  ∫_0 ^( 3) f(x)dx=∫_0 ^( 2) {(1−(x/2))^2 dx      −∫_2 ^( 3) {(1−(x/2))^2 dx+∫_0 ^( 3) (x^2 /4)dx    =(2/3)((x/2)−1)^3 ∣_0 ^2 −(2/3)((x/2)−1)^3 ∣_2 ^3          +(x^3 /(12))∣_0 ^3     =(2/3)−(1/(12))+(9/4)=((17)/6)
f(x)=201(tx2)2dx=(tx2)(tx2)201=(1x2)(1x2)2+x2x2403f(x)dx=02{(1x2)2dx23{(1x2)2dx+03x24dx=23(x21)30223(x21)323+x31203=23112+94=176
Answered by ajfour last updated on 19/Apr/21
(df/dx)=(x^2 /(x^3 −3x^2 +3x))+((2f)/x)  x^2 (((df(x))/dx))−2xf(x)=(x^3 /(x^2 −3x+3))  d(((f(x))/x^2 ))=(1/(x(x^2 −3x+3)))  (3/(3x(x^2 −3x+3)))=(1/(3x))+((Ax+B)/(x^2 −3x+3))   ⇒  x^2 −3x+3+3Ax^2 +3Bx=3  ⇒  A=−(1/3),  B=1=(3/3)  f(x)=x^2 {((ln x)/3)−(1/3)∫(((x−3)dx)/(x^2 −3x+3))+k}  f^( 1) (x)=((2xln x)/3)+(x/3)−((x^2 (x−3))/(3(x^2 −3x+3)))        +2x(((f(x))/x^2 )−((ln x)/3))  f^( 1) (x)=(x/3)−((x^2 (x−3))/(3(x^2 −3x+3)))+((2f(x))/x)  xf^( 1) (x)=(x^2 /3)−((x^2 (x^2 −3x))/(3(x^2 −3x+3)))+2f(x)  f^( 1) (x)+xf^( 2) (x)=((2x(x^2 −3x+3)−x^2 (2x−3))/((x^2 −3x+3)^2 ))+2f^( 1) (x)   xf^( 2) (x)=−((3x^2 )/((x^2 −3x+3)^2 ))+f^( 1) (x)  x(x^2 −3x+3)^2 f^( 2) (x)+3x^2        =(x^2 −3x+3)^2 f^( 1) (x)  {(x^2 −3x+3)^2 +2x(2x−3)(x^2 −3x+3)}f^( 2) (x)  +x(x^2 −3x+3)^2 f^( 3) (x)+6x  =2(x^2 −3x+3)(2x−3)f^( 1) (x)       +(x^2 −3x+3)^2 f^( 2) (x)  ⇒ 2x(2x−3)(x^2 −3x+3)f^( 2) (x)    +x(x^2 −3x+3)^2 f^( 3) (x)+6    =2(x^2 −3x+3)(2x−3)f^( 1) (x)  ⇒  2(2x−3)(3x^2 )=6(x^2 −3x+3)            +x(x^2 −3x+3)^2 f^( 3) (x)  f^( 3) (x)=((6x^2 (2x−3)−6(x^2 −3x+3))/(x(x^2 −3x+3)^2 ))     =((6(2x^3 −4x^2 +3x−3))/(x(x^2 −3x+3)^2 ))  let  x=t+h  f^( 3) (t)=((6(2t^3 +6ht^2 +6h^2 t+h^3 −4t^2 −8ht−4h^2 +3t+3h−3))/((t+h)(t^2 +2ht+h^2 −3t−3h+3)^2 ))  let  −2h^3 +6h^3 −6h^3 +h^3 −4h^2 +8h^2 −4h^2 −3h+3h−3=0  ⇒  −h^3 −3=0  h=−3^(1/3)   ...
dfdx=x2x33x2+3x+2fxx2(df(x)dx)2xf(x)=x3x23x+3d(f(x)x2)=1x(x23x+3)33x(x23x+3)=13x+Ax+Bx23x+3x23x+3+3Ax2+3Bx=3A=13,B=1=33f(x)=x2{lnx313(x3)dxx23x+3+k}f1(x)=2xlnx3+x3x2(x3)3(x23x+3)+2x(f(x)x2lnx3)f1(x)=x3x2(x3)3(x23x+3)+2f(x)xxf1(x)=x23x2(x23x)3(x23x+3)+2f(x)f1(x)+xf2(x)=2x(x23x+3)x2(2x3)(x23x+3)2+2f1(x)xf2(x)=3x2(x23x+3)2+f1(x)x(x23x+3)2f2(x)+3x2=(x23x+3)2f1(x){(x23x+3)2+2x(2x3)(x23x+3)}f2(x)+x(x23x+3)2f3(x)+6x=2(x23x+3)(2x3)f1(x)+(x23x+3)2f2(x)2x(2x3)(x23x+3)f2(x)+x(x23x+3)2f3(x)+6=2(x23x+3)(2x3)f1(x)2(2x3)(3x2)=6(x23x+3)+x(x23x+3)2f3(x)f3(x)=6x2(2x3)6(x23x+3)x(x23x+3)2=6(2x34x2+3x3)x(x23x+3)2letx=t+hf3(t)=6(2t3+6ht2+6h2t+h34t28ht4h2+3t+3h3)(t+h)(t2+2ht+h23t3h+3)2let2h3+6h36h3+h34h2+8h24h23h+3h3=0h33=0h=31/3

Leave a Reply

Your email address will not be published. Required fields are marked *