Question Number 138819 by qaz last updated on 18/Apr/21

Answered by TheSupreme last updated on 18/Apr/21

Answered by mathmax by abdo last updated on 18/Apr/21
![f(x)=∫_0 ^1 ∣x−2t∣dt =_(2t=u) (1/2)∫_0 ^2 ∣x−u∣du ⇒2f(x)=∫_0 ^x ∣x−u∣du +∫_x ^2 ∣x−u∣du =∫_0 ^x (x−u)du+∫_x ^2 (u−x)du =[xu−(u^2 /2)]_(u=0) ^x +[(u^2 /2)−xu]_x ^2 =x^2 −(x^2 /2) +2−2x−(x^2 /2)+x^2 =2x^2 −x^2 +2−2x =x^2 −2x+2 ⇒f(x)=(x^2 /2)−x+1 ⇒ ∫_0 ^3 f(x)dx=∫_0 ^3 ((x^2 /2)−x+1)dx =[(x^3 /6)−(x^2 /2)+x]_0 ^3 =((27)/6)−(9/2)+3=...](https://www.tinkutara.com/question/Q138833.png)
Answered by mathmax by abdo last updated on 18/Apr/21
![f(x)=x^2 ∫_1 ^x (dt/(t(t^2 −3t+3))) let decompose F(t)=(1/(t(t^2 −3t+3))) ⇒F(t)=(a/t)+((bt+c)/(t^2 −3t+3)) we have a=(1/3) lim_(t→+∞) tF(t)=0 =a+b ⇒b=−(1/3) F(1)=1 =a+b+c ⇒c=1−0=1 ⇒F(x)=(1/(3t))+((−(t/3)+1)/(t^2 −3t+3)) ⇒ ∫_1 ^x F(t)dt =∫_1 ^x (dt/(3t))−(1/6)∫_1 ^x ((2t−3−3)/(t^2 −3t+3))dt =(1/3)log∣x∣−(1/6)[log(t^2 −3t+3)]_1 ^x +(3/6)∫_1 ^x (dt/(t^2 −3t+3)) =(1/3)log∣x∣−(1/6)log(x^2 −3x+3)+(3/6)∫_1 ^x (dt/(t^2 −3t+3)) ∫_1 ^x (dt/(t^2 −3t+3)) =∫_1 ^x (dt/(t^2 −2(3/2)t+(9/4)+3−(9/4))) =∫_1 ^x (dt/((t−(3/2))^2 +(3/4)))=_(t−(3/2)=((√3)/2)y) (4/3) ∫_(−(1/( (√3)))) ^((2x−3)/( (√3))) (1/(y^2 +1)).((√3)/2)dy =(2/( (√3)))[arctany]_(−(1/( (√3)))) ^((2x−3)/( (√3))) =(2/( (√3)))(arctan(((2x−3)/( (√3))))+arctan((1/( (√3))))) ⇒∫_1 ^x F(x)dx=(1/3)log∣x∣−(1/6)log(x^2 −3x+3) +(1/( (√3)))(arctan(((2x−3)/( (√3))))+(π/6)) ⇒ f(x)=(1/3)x^2 log∣x∣−(x^2 /6)log(x^2 −3x+3)+(x^2 /( (√3)))(arctan(((2x−3)/( (√3))))+(π/6)) rest to calculate f^((n)) (x)....be continued....](https://www.tinkutara.com/question/Q138834.png)
Commented by qaz last updated on 19/Apr/21

Answered by ajfour last updated on 19/Apr/21

Answered by ajfour last updated on 19/Apr/21
