Menu Close

1-find-dx-x-1-2-x-3-4-2-deduce-the-decomposition-of-F-x-1-x-1-2-x-3-4-




Question Number 135957 by mathmax by abdo last updated on 17/Mar/21
1) find ∫  (dx/((x+1)^2 (x−3)^4 ))  2) deduce the decomposition of F(x)=(1/((x+1)^2 (x−3)^4 ))
1)finddx(x+1)2(x3)42)deducethedecompositionofF(x)=1(x+1)2(x3)4
Answered by Dwaipayan Shikari last updated on 17/Mar/21
(1/((x+1)^2 (x−3)^4 ))=(1/((x−3)^2 ))((1/((x+1)(x−3))))^2 =τ(x)  =(1/(16))((1/((x−3)^2 (x+1)^2 ))−(2/((x−3)^3 (x+1)))+(1/((x−3)^4 )))  =(1/(256))((1/((x−3)^2 ))+(1/((x+1)^2 ))−(2/((x−3)(x+1))))−(1/(32(x−3)^2 ))((1/(x−3))−(1/(x+1)))+(1/(16(x−3)^4 ))  =(1/(256(x−3)^2 ))+(1/(256(x+1)^2 ))−(1/(512(x−3)))+(1/(512(x+1)))−(1/(32(x−3)^3 ))+(1/(128(x−3)^2 ))−(1/(512(x−3)))+(1/(512(x+1)))+(1/(16(x−3)^4 ))  =(3/(256(x−3)^2 ))−(1/(256(x−3)))+(1/(256(x+1)))+(1/(256(x+1)^2 ))+(1/(32(x−3)^3 ))+(1/(16(x−3)^4 ))
1(x+1)2(x3)4=1(x3)2(1(x+1)(x3))2=τ(x)=116(1(x3)2(x+1)22(x3)3(x+1)+1(x3)4)=1256(1(x3)2+1(x+1)22(x3)(x+1))132(x3)2(1x31x+1)+116(x3)4=1256(x3)2+1256(x+1)21512(x3)+1512(x+1)132(x3)3+1128(x3)21512(x3)+1512(x+1)+116(x3)4=3256(x3)21256(x3)+1256(x+1)+1256(x+1)2+132(x3)3+116(x3)4
Answered by mathmax by abdo last updated on 17/Mar/21
1) Φ=∫  (dx/((x+1)^2 (x−3)^4 ))  ⇒Φ=∫ (dx/((((x−3)/(x+1)))^4 (x+1)^6 ))  we do the changement ((x−3)/(x+1))=t ⇒x−3=tx+t ⇒(1−t)x=3+t ⇒  x=((3+t)/(1−t)) ⇒ (dx/dt)=((1−t−(3+t)(−1))/((1−t)^2 ))=((1−t+3+t)/((1−t)^2 ))=(4/((1−t)^2 ))  and  x+1 =((3+t)/(1−t))+1 =((3+t+1−t)/(1−t))=(4/(1−t)) ⇒  Φ=∫  (1/(t^4 ((4/(1−t)))^6 ))((4dt)/((1−t)^2 )) =(1/4^5 )∫   (((1−t)^4 )/t^4 )dt  =(1/4^5 )∫  (((t−1)^4 )/t^4 ) dt =(1/4^5 )∫ (((t^2 −2t+1)^2 )/t^4 )dt  =(1/4^5 )∫  (((t^2 −2t)^2  +2(t^2 −2t)+1)/t^4 )dt  =(1/4^5 )∫  ((t^4 −4t^3  +4t^2  +2t^2 −4t +1)/t^4 )dt  =(1/4^5 )∫  ((t^4 −4t^3 +6t^2 −4t+1)/t^4 )dt  =(1/4^5 ){ ∫ (1−(4/t)+(6/t^2 )−(4/t^3 )+(1/t^4 ))dt}  ⇒4^5  .Φ =t−4ln∣t∣−(6/t)−4.(1/(−3+1))t^(−3+1)  +(1/(−4+1))t^(−4+1)  +C  =t−4ln∣t∣−(6/t) +(2/t^2 )−(1/(3t^3 )) +C  =((x−3)/(x+1))−4ln∣((x−3)/(x+1))∣ −6.((x+1)/(x−3)) +2(((x+1)/(x−3)))^2 −(1/3)(((x+1)/(x−3)))^3  +C ⇒  Φ=(1/4^5 ){((x−3)/(x+1))−4ln∣((x−3)/(x+1))∣−((6(x+1))/(x−3))+2(((x+1)/(x−3)))^2 −(1/3)(((x+1)/(x−3)))^2 } +C
1)Φ=dx(x+1)2(x3)4Φ=dx(x3x+1)4(x+1)6wedothechangementx3x+1=tx3=tx+t(1t)x=3+tx=3+t1tdxdt=1t(3+t)(1)(1t)2=1t+3+t(1t)2=4(1t)2andx+1=3+t1t+1=3+t+1t1t=41tΦ=1t4(41t)64dt(1t)2=145(1t)4t4dt=145(t1)4t4dt=145(t22t+1)2t4dt=145(t22t)2+2(t22t)+1t4dt=145t44t3+4t2+2t24t+1t4dt=145t44t3+6t24t+1t4dt=145{(14t+6t24t3+1t4)dt}45.Φ=t4lnt6t4.13+1t3+1+14+1t4+1+C=t4lnt6t+2t213t3+C=x3x+14lnx3x+16.x+1x3+2(x+1x3)213(x+1x3)3+CΦ=145{x3x+14lnx3x+16(x+1)x3+2(x+1x3)213(x+1x3)2}+C
Commented by mathmax by abdo last updated on 17/Mar/21
2) F(x)=(d/dx)Φ  (((x−3)/(x+1)))^((1))  =((x+1−(x−3))/((x+1)^2 ))=(4/((x+1)^2 ))  =(ln∣((x−3)/(x+1))∣)^((1))  =(4/((x+1)^2 ))×((x+1)/(x−3)) =(4/((x+1)(x−3)))=(1/(x−3))−(1/(x+1))  (((x+1)/(x−3)))^((1))  =((x−3−(x+1))/((x−3)^2 ))=((−4)/((x−3)^2 ))  {(((x+1)/(x−3)))^2 }^((1))  =2(((x+1)/(x−3)))×((−4)/((x−3)^2 ))=−((8(x+1))/((x−3)^3 ))  =−8((x−3+4)/((x−3)^3 ))=−(8/((x−3)^2 ))−((32)/((x−3)^3 ))  (((x+1)/(x−3)))^3 }^((1))  =3(((x+1)/(x−3)))^2 .((−4)/((x−3)^2 )) =−12(((x+1)^2 )/((x−3)^3 ))  =−12 (((x−3+4)^2 )/((x−3)^3 )) =−12.(((x−3)^2 +8(x−3)+16)/((x−3)^3 ))  =−12{(1/((x−3)))+(8/((x−3)^2 ))+((16)/((x−3)^3 ))}  rest to collect the values...
2)F(x)=ddxΦ(x3x+1)(1)=x+1(x3)(x+1)2=4(x+1)2=(lnx3x+1)(1)=4(x+1)2×x+1x3=4(x+1)(x3)=1x31x+1(x+1x3)(1)=x3(x+1)(x3)2=4(x3)2{(x+1x3)2}(1)=2(x+1x3)×4(x3)2=8(x+1)(x3)3=8x3+4(x3)3=8(x3)232(x3)3(x+1x3)3}(1)=3(x+1x3)2.4(x3)2=12(x+1)2(x3)3=12(x3+4)2(x3)3=12.(x3)2+8(x3)+16(x3)3=12{1(x3)+8(x3)2+16(x3)3}resttocollectthevalues

Leave a Reply

Your email address will not be published. Required fields are marked *