1-find-dx-x-1-2-x-3-4-2-deduce-the-decomposition-of-F-x-1-x-1-2-x-3-4- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 135957 by mathmax by abdo last updated on 17/Mar/21 1)find∫dx(x+1)2(x−3)42)deducethedecompositionofF(x)=1(x+1)2(x−3)4 Answered by Dwaipayan Shikari last updated on 17/Mar/21 1(x+1)2(x−3)4=1(x−3)2(1(x+1)(x−3))2=τ(x)=116(1(x−3)2(x+1)2−2(x−3)3(x+1)+1(x−3)4)=1256(1(x−3)2+1(x+1)2−2(x−3)(x+1))−132(x−3)2(1x−3−1x+1)+116(x−3)4=1256(x−3)2+1256(x+1)2−1512(x−3)+1512(x+1)−132(x−3)3+1128(x−3)2−1512(x−3)+1512(x+1)+116(x−3)4=3256(x−3)2−1256(x−3)+1256(x+1)+1256(x+1)2+132(x−3)3+116(x−3)4 Answered by mathmax by abdo last updated on 17/Mar/21 1)Φ=∫dx(x+1)2(x−3)4⇒Φ=∫dx(x−3x+1)4(x+1)6wedothechangementx−3x+1=t⇒x−3=tx+t⇒(1−t)x=3+t⇒x=3+t1−t⇒dxdt=1−t−(3+t)(−1)(1−t)2=1−t+3+t(1−t)2=4(1−t)2andx+1=3+t1−t+1=3+t+1−t1−t=41−t⇒Φ=∫1t4(41−t)64dt(1−t)2=145∫(1−t)4t4dt=145∫(t−1)4t4dt=145∫(t2−2t+1)2t4dt=145∫(t2−2t)2+2(t2−2t)+1t4dt=145∫t4−4t3+4t2+2t2−4t+1t4dt=145∫t4−4t3+6t2−4t+1t4dt=145{∫(1−4t+6t2−4t3+1t4)dt}⇒45.Φ=t−4ln∣t∣−6t−4.1−3+1t−3+1+1−4+1t−4+1+C=t−4ln∣t∣−6t+2t2−13t3+C=x−3x+1−4ln∣x−3x+1∣−6.x+1x−3+2(x+1x−3)2−13(x+1x−3)3+C⇒Φ=145{x−3x+1−4ln∣x−3x+1∣−6(x+1)x−3+2(x+1x−3)2−13(x+1x−3)2}+C Commented by mathmax by abdo last updated on 17/Mar/21 2)F(x)=ddxΦ(x−3x+1)(1)=x+1−(x−3)(x+1)2=4(x+1)2=(ln∣x−3x+1∣)(1)=4(x+1)2×x+1x−3=4(x+1)(x−3)=1x−3−1x+1(x+1x−3)(1)=x−3−(x+1)(x−3)2=−4(x−3)2{(x+1x−3)2}(1)=2(x+1x−3)×−4(x−3)2=−8(x+1)(x−3)3=−8x−3+4(x−3)3=−8(x−3)2−32(x−3)3(x+1x−3)3}(1)=3(x+1x−3)2.−4(x−3)2=−12(x+1)2(x−3)3=−12(x−3+4)2(x−3)3=−12.(x−3)2+8(x−3)+16(x−3)3=−12{1(x−3)+8(x−3)2+16(x−3)3}resttocollectthevalues… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-70423Next Next post: how-many-of-the-first-triangular-number-have-the-ones-zero- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.