Menu Close

1-If-A-and-B-are-sets-define-their-scheffer-product-A-B-by-A-B-A-B-Prove-by-definitions-that-A-B-A-B-A-B-2-State-the-strong-principle-of-mathematical-induction-Suppose-that-a-1-1-a-2-3-a




Question Number 135889 by Ar Brandon last updated on 16/Mar/21
1\ If A and B are sets define their scheffer product A∗B by A∗B=A∗∩B∗  Prove by definitions that (A∗B)∗(A∗B)=A∪B    2\ State the strong principle of mathematical induction.  Suppose that a_1 =1 , a_2 =3  a_k =a_(k−2) +2a_(k−1)  for all natural numbers k≥3. Use the strong principle of  mathematical induction to prove that a_n  is odd for all natural numbers.
$$\mathrm{1}\backslash\:\mathrm{If}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{sets}\:\mathrm{define}\:\mathrm{their}\:\mathrm{scheffer}\:\mathrm{product}\:\mathrm{A}\ast\mathrm{B}\:\mathrm{by}\:\mathrm{A}\ast\mathrm{B}=\mathrm{A}\ast\cap\mathrm{B}\ast \\ $$$$\mathrm{Prove}\:\mathrm{by}\:\mathrm{definitions}\:\mathrm{that}\:\left(\mathrm{A}\ast\mathrm{B}\right)\ast\left(\mathrm{A}\ast\mathrm{B}\right)=\mathrm{A}\cup\mathrm{B} \\ $$$$ \\ $$$$\mathrm{2}\backslash\:\mathrm{State}\:\mathrm{the}\:\mathrm{strong}\:\mathrm{principle}\:\mathrm{of}\:\mathrm{mathematical}\:\mathrm{induction}. \\ $$$$\mathrm{Suppose}\:\mathrm{that}\:\mathrm{a}_{\mathrm{1}} =\mathrm{1}\:,\:\mathrm{a}_{\mathrm{2}} =\mathrm{3} \\ $$$$\mathrm{a}_{\mathrm{k}} =\mathrm{a}_{\mathrm{k}−\mathrm{2}} +\mathrm{2a}_{\mathrm{k}−\mathrm{1}} \:\mathrm{for}\:\mathrm{all}\:\mathrm{natural}\:\mathrm{numbers}\:\mathrm{k}\geqslant\mathrm{3}.\:\mathrm{Use}\:\mathrm{the}\:\mathrm{strong}\:\mathrm{principle}\:\mathrm{of} \\ $$$$\mathrm{mathematical}\:\mathrm{induction}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{a}_{\mathrm{n}} \:\mathrm{is}\:\mathrm{odd}\:\mathrm{for}\:\mathrm{all}\:\mathrm{natural}\:\mathrm{numbers}. \\ $$
Answered by mindispower last updated on 19/Mar/21
A∗B=....?
$${A}\ast{B}=….? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *