Menu Close

1-If-y-x-n-1-log-x-then-prove-that-x-2-d-2-y-dx-2-3-2n-x-dy-dx-n-1-2-y-0-2-If-mtan-cos-2-ntan-cos-2-then-prove-that-1-2-tan-1-n-m-n-m-tan-




Question Number 65601 by AnjanDey last updated on 31/Jul/19
1.If y=x^(n−1) log x,then prove that,x^2 (d^2 y/dx^2 )+(3−2n)x(dy/dx)+(n−1)^2 y=0  2.If ((mtan (α−θ))/(cos^2 θ))=((ntan θ)/(cos^2 (α−θ))),then prove that,θ=(1/2)[α−tan^(−1) (((n−m)/(n+m))tan α)]
1.Ify=xn1logx,thenprovethat,x2d2ydx2+(32n)xdydx+(n1)2y=02.Ifmtan(αθ)cos2θ=ntanθcos2(αθ),thenprovethat,θ=12[αtan1(nmn+mtanα)]
Commented by Prithwish sen last updated on 01/Aug/19
2.  ((sin(α−θ)cos(α−θ))/(sinθcosθ)) =(n/m)⇒((sin2(α−θ))/(sin2θ)) =(n/m)  ⇒((sin2(α−θ)−sin2θ)/(sin2(α−θ)+sin2θ)) = ((n−m)/(n+m))  ⇒((tan(α−2θ))/(tanα)) =((n−m)/(n+m))   1.(dy/dx) = (n−1)x^(n−2) logx + x^(n−2)   (d^2 y/dx^2 ) =(n−1)(n−2)x^(n−3) logx+(n−1)x^(n−3) +(n−2)x^(n−3)   x^2 (d^2 y/dx^2 ) = (n−1)(n−2)x^(n−1) logx + (n−1+n−2)x^(n−1)                 =− (n−1)^2 x^(n−1) logx+(n−1)(2n−3)x^(n−1) logx+(2n−3)x^(n−1)              =−(n−1)^2 y−(3−2n)x[(n−1)x^(n−2) logx+x^(n−2) ]  ⇒x^2 (d^2 y/dx^2 ) +(3−2n)(dy/dx) +(n−1)^2 y = 0  please check.
2.sin(αθ)cos(αθ)sinθcosθ=nmsin2(αθ)sin2θ=nmsin2(αθ)sin2θsin2(αθ)+sin2θ=nmn+mtan(α2θ)tanα=nmn+m1.dydx=(n1)xn2logx+xn2d2ydx2=(n1)(n2)xn3logx+(n1)xn3+(n2)xn3x2d2ydx2=(n1)(n2)xn1logx+(n1+n2)xn1=(n1)2xn1logx+(n1)(2n3)xn1logx+(2n3)xn1=(n1)2y(32n)x[(n1)xn2logx+xn2]x2d2ydx2+(32n)dydx+(n1)2y=0pleasecheck.