Menu Close

1-k-1-C-n-k-




Question Number 141614 by ArielVyny last updated on 21/May/21
Σ(1/(k+1))C_n ^k  .
Σ1k+1Cnk.
Commented by Dwaipayan Shikari last updated on 21/May/21
(1/(k+1))Σ_(n=0) ^k C_n ^k =(1/(k+1))Σ_(n=0) ^k C_n ^k (1)^(k−n) (1)^n =(((1+1)^k )/(k+1))=(2^k /(k+1))
1k+1kn=0Cnk=1k+1kn=0Cnk(1)kn(1)n=(1+1)kk+1=2kk+1
Commented by mathmax by abdo last updated on 21/May/21
not correct sir ...
notcorrectsir
Answered by mathmax by abdo last updated on 21/May/21
let f(x)=Σ_(k=0) ^n  (1/(k+1))C_k ^n  x^(k+1)  we have  f^′ (x)=Σ_(k=0) ^n  C_n ^k  x^k  =(x+1)^n  ⇒f(x)=∫ (x+1)^n  dx +C  =(((x+1)^(n+1) )/(n+1)) +C  f(1)=Σ_(k=0) ^n  (C_n ^k /(k+1)) =(2^(n+1) /(n+1))  +C  we f(0)=(1/(n+1)) +C=0 ⇒C=−(1/(n+1)) ⇒Σ_(k=0) ^n  (C_n ^k /(k+1))=(2^(n+1) /(n+1))−(1/(n+1))  =((2^(n+1) −1)/(n+1))
letf(x)=k=0n1k+1Cknxk+1wehavef(x)=k=0nCnkxk=(x+1)nf(x)=(x+1)ndx+C=(x+1)n+1n+1+Cf(1)=k=0nCnkk+1=2n+1n+1+Cwef(0)=1n+1+C=0C=1n+1k=0nCnkk+1=2n+1n+11n+1=2n+11n+1
Commented by ArielVyny last updated on 22/May/21
thank sir
thanksir

Leave a Reply

Your email address will not be published. Required fields are marked *