1-Let-consider-S-n-0-n-and-T-n-0-1-n-1-n-We-know-that-x-1-1-n-0-x-n-1-1-x-then-after-derivating-1-1-x-2-n-1-1-n-1-nx-n-1-f Tinku Tara June 3, 2023 Logic 0 Comments FacebookTweetPin Question Number 67651 by ~ À ® @ 237 ~ last updated on 29/Aug/19 1)LetconsiderS=∑∞n=0nandT=∑∞n=0(−1)n+1nWeknowthat∀x∈]−1;1]∑∞n=0(−x)n=11+x,thenafterderivating1(1+x)2=∑∞n=1(−1)n+1nxn−1forx=1,wegetT=14NowletascertainsomethingT=∑∞n=0(−1)2n+2(2n+1)+∑∞n=0(−1)2n+1(2n)=∑∞n=0(2n+1)−2S(∙)knowingthatS=∑∞n=0(2n)+∑∞n=0(2n+1)So∑∞n=0(2n+1)=S−2SWhenreplacingthatvaluein(∙)wegetT=(S−2S)−2SIficoncludethatT=−3SandfinallyfindS=−T3=−112wherewillthemistakebe?2)LetconsiderK=1+20202019+(20202019)2+(20202019)3+……+…20202019K=20202019+(20202019)2+(20202019)3+….K−1=20202019+(20202019)2+(20202019)3+…So20202019K=K−1ThenK=−2019Whereistheerror?3)LetconsidernanintegerWehave0=n−n=n+(−n)=n+(−n)2×12=n+[(−n)2]12=n+n2=n+n=2nSo<<allintegerarenull:0istheonlyinteger>>Whereistheerror?4)letconsidernanintegerdifferentofzeroandf(n)=nln(n)wehavedfdn=ln(n)+1(∙)Likewisef(n)=ln(nn)andweknowthatnn=n×n×n×……×n(ntimes)Sof(n)=ln(n)+ln(n)+……+ln(n)(ntimes)Nowwehavedfdn=1n+1n+….+1n(ntimes)Sodfdn=1(∙∙)Relation(∙)and(∙∙)giveln(n)+1=1thenln(n)=0⇒n=1<<Thelogarithmofalln⩾1isnull:Thereisnointegerbigthan1>>Whereistheerror?5)letconsiderx=0,999999999…….weascertainthat10x=9,999999999……then10x=9+0,999999999….So10x=9+xfinallyx=1<<0.9999999999999999…..isandinteger>>Isthereanyerror?6)letconsidera=2666666666666666666666666666666665b=999999999999999999999995199999999999999999999999Inthewaytocancel,ifijustremoveonecommonfiguretothenumeratorandtothedenominatorAndifinda=25andb=51Willitbewrong?ifno,explain! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Prove-that-n-N-H-2-n-1-n-2-where-H-m-r-1-m-1-r-Next Next post: g-x-y-x-4-y-4-2-x-y-2-find-criticals-points-of-g-x-y-and-hers-nature- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.