Menu Close

1-Let-consider-S-n-0-n-and-T-n-0-1-n-1-n-We-know-that-x-1-1-n-0-x-n-1-1-x-then-after-derivating-1-1-x-2-n-1-1-n-1-nx-n-1-f




Question Number 67651 by ~ À ® @ 237 ~ last updated on 29/Aug/19
1)Let consider  S= Σ_(n=0) ^∞  n     and  T=Σ_(n=0) ^∞  (−1)^(n+1) n  We know that  ∀ x∈]−1;1]  Σ_(n=0) ^∞ (−x)^n  =(1/(1+x)) ,    then after derivating   (1/((1+x)^2 ))=Σ_(n=1) ^∞ (−1)^(n+1)  nx^(n−1)   for  x=1 ,we get   T=(1/4)   Now  let ascertain something  T=Σ_(n=0) ^∞ (−1)^(2n+2) (2n+1) +Σ_(n=0) ^∞ (−1)^(2n+1) (2n)    =Σ_(n=0) ^∞ (2n+1) −2S            (•)  knowing that S=Σ_(n=0) ^∞ (2n)+Σ_(n=0) ^∞ (2n+1)  So Σ_(n=0) ^∞ (2n+1)= S−2S   When replacing that value in  (•)  we get    T=(S−2S )−2S     If i conclude that  T=−3S    and finally  find  S=−(T/3)=−(1/(12))    where will the mistake be?   2)Let consider K=1+((2020)/(2019))+(((2020)/(2019)))^2 +(((2020)/(2019)))^3 +......+...  ((2020)/(2019))K=((2020)/(2019))+(((2020)/(2019)))^2 +(((2020)/(2019)))^3 +....  K−1=((2020)/(2019))+(((2020)/(2019)))^2 +(((2020)/(2019)))^3 +...  So  ((2020)/(2019))K=K−1   Then  K=−2019  Where is the error?  3)Let consider n an  integer   We have  0=n−n    =n+(−n)=n+(−n)^(2×(1/2))    =n+[(−n)^2 ]^(1/2) =n+ (√n^2 ) = n+n=2n  So << all  integer   are null  :  0 is the  only integer>>  Where is the error?  4)   let consider n an integer different of zero and  f(n)=nln(n)  we have  (df/dn)=ln(n)+1    (•)  Likewise f(n)=ln(n^n )   and we know that  n^n =n×n×n×......×n  (n times)  So  f(n)=ln(n)+ln(n)+......+ln(n)      (n times)  Now we have  (df/dn)=(1/n)+(1/n)+....+(1/n)      (n  times)  So   (df/( dn))=1     (••)  Relation (•)  and    (••)  give      ln(n)+1=1   then  ln(n)=0 ⇒ n=1  << The logarithm of  all n≥1 is null : There is no integer big than 1 >>  Where is the error?  5) let consider  x=0,999999999.......  we ascertain that   10x=9,999999999......  then  10x=9+0,999999999....  So  10x=9+x    finally  x=1  << 0.9999999999999999 .....  is  and integer >>  Is there any error?  6)let consider  a=((26666666666666666)/(66666666666666665))   b=((999999999999999999999995)/(199999999999999999999999))   In the way to cancel , if i just remove one common  figure to the numerator and to the denominator  And i find a=(2/5)  and  b=(5/1)   Will it be wrong? if  no ,explain!
$$\left.\mathrm{1}\right){Let}\:{consider}\:\:{S}=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:{n}\:\:\:\:\:{and}\:\:{T}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {n} \\ $$$$\left.{W}\left.{e}\:{know}\:{that}\:\:\forall\:{x}\in\right]−\mathrm{1};\mathrm{1}\right] \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−{x}\right)^{{n}} \:=\frac{\mathrm{1}}{\mathrm{1}+{x}}\:,\:\: \\ $$$${then}\:{after}\:{derivating}\: \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \:{nx}^{{n}−\mathrm{1}} \\ $$$${for}\:\:{x}=\mathrm{1}\:,{we}\:{get}\:\:\:{T}=\frac{\mathrm{1}}{\mathrm{4}}\: \\ $$$${Now}\:\:{let}\:{ascertain}\:{something} \\ $$$${T}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{2}{n}+\mathrm{2}} \left(\mathrm{2}{n}+\mathrm{1}\right)\:+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{2}{n}+\mathrm{1}} \left(\mathrm{2}{n}\right) \\ $$$$\:\:=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\mathrm{2}{n}+\mathrm{1}\right)\:−\mathrm{2}{S}\:\:\:\:\:\:\:\:\:\:\:\:\left(\bullet\right) \\ $$$${knowing}\:{that}\:{S}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\mathrm{2}{n}\right)+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\mathrm{2}{n}+\mathrm{1}\right) \\ $$$${So}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\mathrm{2}{n}+\mathrm{1}\right)=\:{S}−\mathrm{2}{S}\: \\ $$$${When}\:{replacing}\:{that}\:{value}\:{in}\:\:\left(\bullet\right) \\ $$$${we}\:{get}\:\: \\ $$$${T}=\left({S}−\mathrm{2}{S}\:\right)−\mathrm{2}{S} \\ $$$$\: \\ $$$${If}\:{i}\:{conclude}\:{that}\:\:{T}=−\mathrm{3}{S}\:\: \\ $$$${and}\:{finally}\:\:{find}\:\:{S}=−\frac{{T}}{\mathrm{3}}=−\frac{\mathrm{1}}{\mathrm{12}}\:\: \\ $$$${where}\:{will}\:{the}\:{mistake}\:{be}? \\ $$$$\left.\:\mathrm{2}\right){Let}\:{consider}\:{K}=\mathrm{1}+\frac{\mathrm{2020}}{\mathrm{2019}}+\left(\frac{\mathrm{2020}}{\mathrm{2019}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2020}}{\mathrm{2019}}\right)^{\mathrm{3}} +……+… \\ $$$$\frac{\mathrm{2020}}{\mathrm{2019}}{K}=\frac{\mathrm{2020}}{\mathrm{2019}}+\left(\frac{\mathrm{2020}}{\mathrm{2019}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2020}}{\mathrm{2019}}\right)^{\mathrm{3}} +…. \\ $$$${K}−\mathrm{1}=\frac{\mathrm{2020}}{\mathrm{2019}}+\left(\frac{\mathrm{2020}}{\mathrm{2019}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2020}}{\mathrm{2019}}\right)^{\mathrm{3}} +… \\ $$$${So}\:\:\frac{\mathrm{2020}}{\mathrm{2019}}{K}={K}−\mathrm{1}\: \\ $$$${Then}\:\:{K}=−\mathrm{2019} \\ $$$${Where}\:{is}\:{the}\:{error}? \\ $$$$\left.\mathrm{3}\right){Let}\:{consider}\:{n}\:{an}\:\:{integer}\: \\ $$$${We}\:{have} \\ $$$$\mathrm{0}={n}−{n} \\ $$$$\:\:={n}+\left(−{n}\right)={n}+\left(−{n}\right)^{\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\:={n}+\left[\left(−{n}\right)^{\mathrm{2}} \right]^{\frac{\mathrm{1}}{\mathrm{2}}} ={n}+\:\sqrt{{n}^{\mathrm{2}} }\:=\:{n}+{n}=\mathrm{2}{n} \\ $$$${So}\:<<\:{all}\:\:{integer}\:\:\:{are}\:{null}\:\::\:\:\mathrm{0}\:{is}\:{the}\:\:{only}\:{integer}>> \\ $$$${Where}\:{is}\:{the}\:{error}? \\ $$$$\left.\mathrm{4}\right)\:\:\:{let}\:{consider}\:{n}\:{an}\:{integer}\:{different}\:{of}\:{zero}\:{and}\:\:{f}\left({n}\right)={nln}\left({n}\right) \\ $$$${we}\:{have}\:\:\frac{{df}}{{dn}}={ln}\left({n}\right)+\mathrm{1}\:\:\:\:\left(\bullet\right) \\ $$$${Likewise}\:{f}\left({n}\right)={ln}\left({n}^{{n}} \right)\:\:\:{and}\:{we}\:{know}\:{that} \\ $$$${n}^{{n}} ={n}×{n}×{n}×……×{n}\:\:\left({n}\:{times}\right) \\ $$$${So}\:\:{f}\left({n}\right)={ln}\left({n}\right)+{ln}\left({n}\right)+……+{ln}\left({n}\right)\:\:\:\:\:\:\left({n}\:{times}\right) \\ $$$${Now}\:{we}\:{have}\:\:\frac{{df}}{{dn}}=\frac{\mathrm{1}}{{n}}+\frac{\mathrm{1}}{{n}}+….+\frac{\mathrm{1}}{{n}}\:\:\:\:\:\:\left({n}\:\:{times}\right) \\ $$$${So}\:\:\:\frac{{df}}{\:{dn}}=\mathrm{1}\:\:\:\:\:\left(\bullet\bullet\right) \\ $$$${Relation}\:\left(\bullet\right)\:\:{and}\:\:\:\:\left(\bullet\bullet\right)\:\:{give}\:\:\:\: \\ $$$${ln}\left({n}\right)+\mathrm{1}=\mathrm{1}\:\:\:{then}\:\:{ln}\left({n}\right)=\mathrm{0}\:\Rightarrow\:{n}=\mathrm{1} \\ $$$$<<\:{The}\:{logarithm}\:{of}\:\:{all}\:{n}\geqslant\mathrm{1}\:{is}\:{null}\::\:{There}\:{is}\:{no}\:{integer}\:{big}\:{than}\:\mathrm{1}\:>> \\ $$$${Where}\:{is}\:{the}\:{error}? \\ $$$$\left.\mathrm{5}\right)\:{let}\:{consider}\:\:{x}=\mathrm{0},\mathrm{999999999}……. \\ $$$${we}\:{ascertain}\:{that}\: \\ $$$$\mathrm{10}{x}=\mathrm{9},\mathrm{999999999}…… \\ $$$${then}\:\:\mathrm{10}{x}=\mathrm{9}+\mathrm{0},\mathrm{999999999}…. \\ $$$${So}\:\:\mathrm{10}{x}=\mathrm{9}+{x}\:\: \\ $$$${finally}\:\:{x}=\mathrm{1} \\ $$$$<<\:\mathrm{0}.\mathrm{9999999999999999}\:…..\:\:{is}\:\:{and}\:{integer}\:>> \\ $$$${Is}\:{there}\:{any}\:{error}? \\ $$$$\left.\mathrm{6}\right){let}\:{consider}\:\:{a}=\frac{\mathrm{26666666666666666}}{\mathrm{66666666666666665}}\: \\ $$$${b}=\frac{\mathrm{999999999999999999999995}}{\mathrm{199999999999999999999999}}\: \\ $$$${In}\:{the}\:{way}\:{to}\:{cancel}\:,\:{if}\:{i}\:{just}\:{remove}\:{one}\:{common} \\ $$$${figure}\:{to}\:{the}\:{numerator}\:{and}\:{to}\:{the}\:{denominator} \\ $$$${And}\:{i}\:{find}\:{a}=\frac{\mathrm{2}}{\mathrm{5}}\:\:{and}\:\:{b}=\frac{\mathrm{5}}{\mathrm{1}}\: \\ $$$${Will}\:{it}\:{be}\:{wrong}?\:{if}\:\:{no}\:,{explain}! \\ $$$$\: \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *