Menu Close

1-lim-n-6-6-6-6-1-3-1-3-1-3-1-3-




Question Number 143327 by SOMEDAVONG last updated on 13/Jun/21
1/.lim_(n→+∝) ((6+((6+((6+..........+(6)^(1/3) ))^(1/3) ))^(1/3) ))^(1/3) =?
$$\mathrm{1}/.\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\sqrt[{\mathrm{3}}]{\mathrm{6}+\sqrt[{\mathrm{3}}]{\mathrm{6}+\sqrt[{\mathrm{3}}]{\mathrm{6}+……….+\sqrt[{\mathrm{3}}]{\mathrm{6}}}}}=? \\ $$
Answered by MJS_new last updated on 13/Jun/21
y=((6+((6+...))^(1/3) ))^(1/3)   y^3 =6+y  y^3 −y+6=0 ⇒ y=2
$${y}=\sqrt[{\mathrm{3}}]{\mathrm{6}+\sqrt[{\mathrm{3}}]{\mathrm{6}+…}} \\ $$$${y}^{\mathrm{3}} =\mathrm{6}+{y} \\ $$$${y}^{\mathrm{3}} −{y}+\mathrm{6}=\mathrm{0}\:\Rightarrow\:{y}=\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *