Menu Close

1-lim-x-1-1-x-x-




Question Number 3048 by Syaka last updated on 03/Dec/15
1) lim_(x → −∞)  (1 + (1/x))_ ^(x )  = ?
1)limx(1+1x)x=?
Answered by 123456 last updated on 04/Dec/15
L=lim_(x→−∞) (1+(1/x))^x   u=(1/x)  x→−∞≡u→0^−   L=lim_(u→0^− ) (1+u)^(1/u)   remember that  e=lim_(x→0) (1+x)^(1/x)   so  L=e
L=limx(1+1x)xu=1xxu0L=limu0(1+u)1urememberthate=limx0(1+x)1xsoL=e
Commented by prakash jain last updated on 04/Dec/15
y=(1+x)^(1/x)   ln y=(1/x)ln (1+x)  lim_(x→0) ln y=lim_(x→0) ((ln (1+x))/x)=lim_(x→0) (((d/dx)ln (1+x))/((d/dx)x))=lim_(x→0) (1/(1+x))=1  lim_(x→0) ln y=1  lim_(x→0) y=e^1 =e
y=(1+x)1/xlny=1xln(1+x)limlnx0y=limx0ln(1+x)x=limx0ddxln(1+x)ddxx=limx011+x=1limlnx0y=1limx0y=e1=e

Leave a Reply

Your email address will not be published. Required fields are marked *