Menu Close

1-ln-x-1-x-1-x-2-dx-




Question Number 138710 by bramlexs22 last updated on 17/Apr/21
∫^( ∞) _1  ((ln x)/((1+x)(1+x^2 ))) dx =?
1lnx(1+x)(1+x2)dx=?
Answered by mathmax by abdo last updated on 17/Apr/21
Φ=∫_1 ^∞  ((logx)/((1+x)(1+x^2 )))dx ⇒Φ=_(x=(1/t))  −∫_0 ^1  ((−logt)/((1+(1/t))(1+(1/t^2 ))))(−(dt/t^2 ))  =−∫_0 ^1  ((tlogt)/((t+1)(t^2  +1)))dt =−∫_0 ^1  (((t+1−1)logt)/((t+1)(t^2  +1)))dt  =−∫_0 ^1  ((logt)/(t^2  +1))dt +∫_0 ^1  ((logt)/((t+1)(t^2 +1)))dt  we have  ∫_0 ^1  ((logt)/(t^2  +1))dt =∫_0 ^1  logtΣ_(n0) ^∞  (−1)^n t^(2n) dt  =Σ_(n=0) ^∞  (−1)^n ∫_0 ^1   t^(2n)  logt dt =Σ_(n=0) ^∞ (−1)^n u_n   u_n =[(t^(2n+1) /(2n+1))logt]_0 ^1 −∫_0 ^1  (t^(2n) /(2n+1))dt  =−(1/((2n+1)^2 )) ⇒∫_0 ^1  ((logt)/(t^2  +1))dt =−Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 )) =−K(katalan constant)  ∫_0 ^1  ((logt)/((t+1)(t^2  +1)))dt =(1/2)∫_0 ^1 ((1/(t+1))−((t−1)/(t^2  +1)))logt dt  =(1/2)∫_0 ^1  ((logt)/(t+1))dt −(1/2)∫_0 ^1  (((t−1)logt)/(t^2  +1))dt  ∫_0 ^1  ((logt)/(t+1))dt =[log(t+1)logt]_0 ^1 −∫_0 ^1  ((log(t+1))/t)dt  we have (d/dt)log(1+t)=(1/(1+t)) =Σ_(n=0) ^∞ (−1)^n t^n  ⇒  log(1+t)=Σ_(n=0) ^∞  (−1)^n  (t^(n+1) /(n+1))+c(c=0) =Σ_(n=1) ^∞  (((−1)^(n−1)  t^n )/n) ⇒  ∫_0 ^1 ((log(1+t))/t)dt =Σ_(n=1) ^∞ ∫_0 ^1  (((−1)^(n−1) t^(n−1)  )/n)dt  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n^2 ) =−Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =−(2^(1−2) −1)ξ(2)  =−((1/2)−1)(π^2 /6) =(π^2 /(12))  ∫_0 ^1  (((t−1)logt)/(t^2  +1))dt =∫_0 ^1 (t−1)logtΣ_(n=0) ^∞ (−1)^n  t^(2n)  dt  =Σ_(n=0) ^∞ (−1)^n  ∫_0 ^1 (t^(2n+1) −t^(2n) )logt dt  =Σ_(n=0) ^∞ (−1)^n v_n   with v_n =∫_0 ^1 (t^(2n+1) −t^(2n) )logt dt  =[((t^(2n+2) /(2n+2))−(t^(2n+1) /(2n+1)))logt]_0 ^1 −∫_0 ^1 ((t^(2n+1) /(2n+2))−(t^(2n) /(2n+1)))dt  =−(1/((2n+2)^2 ))+(1/((2n+1)^2 )) ⇒  ∫_0 ^1  (((t−1)logt)/(t^2  +1))dt =−Σ_(n=0) ^∞  (((−1)^n )/(4(n+1)^2 ))+Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 ))  =−(1/4)Σ_(n=1) ^∞  (((−1)^(n−1) )/n^2 )+K  =(1/4)Σ_(n=1) ^∞  (((−1)^n )/n^2 )+K =(1/4)(2^(1−2) −1)ξ(2)=(1/4)(−(1/2)).(π^2 /6)  =−(π^2 /(48))   rest to collect the values...
Φ=1logx(1+x)(1+x2)dxΦ=x=1t01logt(1+1t)(1+1t2)(dtt2)=01tlogt(t+1)(t2+1)dt=01(t+11)logt(t+1)(t2+1)dt=01logtt2+1dt+01logt(t+1)(t2+1)dtwehave01logtt2+1dt=01logtn0(1)nt2ndt=n=0(1)n01t2nlogtdt=n=0(1)nunun=[t2n+12n+1logt]0101t2n2n+1dt=1(2n+1)201logtt2+1dt=n=0(1)n(2n+1)2=K(katalanconstant)01logt(t+1)(t2+1)dt=1201(1t+1t1t2+1)logtdt=1201logtt+1dt1201(t1)logtt2+1dt01logtt+1dt=[log(t+1)logt]0101log(t+1)tdtwehaveddtlog(1+t)=11+t=n=0(1)ntnlog(1+t)=n=0(1)ntn+1n+1+c(c=0)=n=1(1)n1tnn01log(1+t)tdt=n=101(1)n1tn1ndt=n=1(1)n1n2=n=1(1)nn2=(2121)ξ(2)=(121)π26=π21201(t1)logtt2+1dt=01(t1)logtn=0(1)nt2ndt=n=0(1)n01(t2n+1t2n)logtdt=n=0(1)nvnwithvn=01(t2n+1t2n)logtdt=[(t2n+22n+2t2n+12n+1)logt]0101(t2n+12n+2t2n2n+1)dt=1(2n+2)2+1(2n+1)201(t1)logtt2+1dt=n=0(1)n4(n+1)2+n=0(1)n(2n+1)2=14n=1(1)n1n2+K=14n=1(1)nn2+K=14(2121)ξ(2)=14(12).π26=π248resttocollectthevalues
Answered by Kamel last updated on 17/Apr/21
Ω=∫_1 ^(+∞) ((Ln(x))/((1+x)(1+x^2 )))dx=−∫_0 ^1 ((tLn(t)dt)/((1+t)(1+t^2 )))  (t/((1+t)(1+t^2 )))=(1/2)(((t(1−t))/((1−t^2 )))+((t(1−t))/(1+t^2 )))=−(1/2)((1/(1+t))−((1+t)/(1+t^2 )))  ∴ Ω=^(u=t^2 ) (1/2)(∫_0 ^1 ((Ln(t))/(1+t))dt−(1/4)∫_0 ^1 ((Ln(u))/(1+u))du−∫_0 ^1 ((Ln(t))/(1+t^2 ))dt)=−(3/8)∫_0 ^1 ((Ln(1+t))/t)dt+(G/2)           =(3/8)Li_2 (−1)+(G/2)=(G/2)−(π^2 /(32))
Ω=1+Ln(x)(1+x)(1+x2)dx=01tLn(t)dt(1+t)(1+t2)t(1+t)(1+t2)=12(t(1t)(1t2)+t(1t)1+t2)=12(11+t1+t1+t2)Ω=u=t212(01Ln(t)1+tdt1401Ln(u)1+udu01Ln(t)1+t2dt)=3801Ln(1+t)tdt+G2=38Li2(1)+G2=G2π232
Answered by qaz last updated on 17/Apr/21
∫_1 ^∞ ((ln x)/((1+x)(1+x^2 )))dx=∫_0 ^1 ((−xlnx)/((1+x)(1+x^2 )))dx  =(1/2)∫_0 ^1 ((1/(1+x))−((1+x)/(1+x^2 )))lnxdx  =−(1/2)∫_0 ^1 ((ln(1+x))/x)dx−(1/2)Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 x^(2n) lnxdx+(1/4)∫_0 ^1 ((ln(1+x^2 ))/x)dx  =(1/2)Li_2 (−1)+(1/2)Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^2 ))+(1/4)Σ_(n=1) ^∞ (((−1)^(n−1) )/n)∫_0 ^1 x^(2n−1) dx  =(1/2)Li_2 (−1)+(1/2)G+(1/8)Σ_(n=1) ^∞ (((−1)^(n−1) )/n^2 )  =(1/2)Li_2 (−1)+(1/2)G−(1/8)Li_2 (−1)  =(1/2)G+(3/8)(2^(1−2) −1)ζ(2)  =(1/2)G−(π^2 /(32))
1lnx(1+x)(1+x2)dx=01xlnx(1+x)(1+x2)dx=1201(11+x1+x1+x2)lnxdx=1201ln(1+x)xdx12n=0(1)n01x2nlnxdx+1401ln(1+x2)xdx=12Li2(1)+12n=0(1)n(2n+1)2+14n=1(1)n1n01x2n1dx=12Li2(1)+12G+18n=1(1)n1n2=12Li2(1)+12G18Li2(1)=12G+38(2121)ζ(2)=12Gπ232
Answered by Ar Brandon last updated on 17/Apr/21
Ω=∫_1 ^∞ ((lnx)/((1+x)(1+x^2 )))dx , x=(1/t)      =∫_1 ^0 ((ln((1/t)))/((1+(1/t))(1+(1/t^2 ))))∙(−(dt/t^2 ))=−∫_0 ^1 ((tlnt)/((1+t)(1+t^2 )))dt  (t/((t+1)(t^2 +1)))=(a/(t+1))+((bt+c)/(t^2 +1))=((a(t^2 +1)+(bt+c)(t+1))/((t+1)(t^2 +1)))  a=−(1/2) , a+b=0 , b=(1/2), a+c=0, c=(1/2)  (t/((t+1)(t^2 +1)))=−(1/(2(1+t)))+((1+t)/(2(1+t^2 )))  Ω=(1/2)∫_0 ^1 ((lnt)/(1+t))dt−(1/2)∫_0 ^1 ((lnt)/(1+t^2 ))dt−(1/2)∫_0 ^1 ((tlnt)/(1+t^2 ))dt      =(1/2)∫_0 ^1 (((1−t)lnt)/(1−t^2 ))dt−(1/2)∫_0 ^(π/4) ln(tanθ)dθ−(1/8)∫_0 ^1 ((ln(u))/(1+u))du      =(1/8)∫_0 ^1 (((v^(−(1/2)) −1)ln(v))/(1−v))dv+(G/2)−(1/8)∫_0 ^1 (((1−u)ln(u))/(1−u^2 ))du      =(1/8)∫_0 ^1 (((v^(−(1/2)) −1)ln(v))/(1−v))dv+(G/2)−(1/(32))∫_0 ^1 (((p^(−(1/2)) −1)ln(p))/(1−p))dp      =(1/8){ψ′(1)−ψ′((1/2))}+(G/2)−(1/(32)){ψ′(1)−ψ′((1/2))}      =(1/8)(ζ(2)−3ζ(2))+(G/2)−(1/(32))(ζ(2)−3ζ(2))      =(G/2)+(3/(32))((π^2 /6)−(π^2 /2))=(G/2)−(π^2 /(32))
Ω=1lnx(1+x)(1+x2)dx,x=1t=10ln(1t)(1+1t)(1+1t2)(dtt2)=01tlnt(1+t)(1+t2)dtt(t+1)(t2+1)=at+1+bt+ct2+1=a(t2+1)+(bt+c)(t+1)(t+1)(t2+1)a=12,a+b=0,b=12,a+c=0,c=12t(t+1)(t2+1)=12(1+t)+1+t2(1+t2)Ω=1201lnt1+tdt1201lnt1+t2dt1201tlnt1+t2dt=1201(1t)lnt1t2dt120π4ln(tanθ)dθ1801ln(u)1+udu=1801(v121)ln(v)1vdv+G21801(1u)ln(u)1u2du=1801(v121)ln(v)1vdv+G213201(p121)ln(p)1pdp=18{ψ(1)ψ(12)}+G2132{ψ(1)ψ(12)}=18(ζ(2)3ζ(2))+G2132(ζ(2)3ζ(2))=G2+332(π26π22)=G2π232

Leave a Reply

Your email address will not be published. Required fields are marked *