Question Number 138710 by bramlexs22 last updated on 17/Apr/21

Answered by mathmax by abdo last updated on 17/Apr/21
![Φ=∫_1 ^∞ ((logx)/((1+x)(1+x^2 )))dx ⇒Φ=_(x=(1/t)) −∫_0 ^1 ((−logt)/((1+(1/t))(1+(1/t^2 ))))(−(dt/t^2 )) =−∫_0 ^1 ((tlogt)/((t+1)(t^2 +1)))dt =−∫_0 ^1 (((t+1−1)logt)/((t+1)(t^2 +1)))dt =−∫_0 ^1 ((logt)/(t^2 +1))dt +∫_0 ^1 ((logt)/((t+1)(t^2 +1)))dt we have ∫_0 ^1 ((logt)/(t^2 +1))dt =∫_0 ^1 logtΣ_(n0) ^∞ (−1)^n t^(2n) dt =Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 t^(2n) logt dt =Σ_(n=0) ^∞ (−1)^n u_n u_n =[(t^(2n+1) /(2n+1))logt]_0 ^1 −∫_0 ^1 (t^(2n) /(2n+1))dt =−(1/((2n+1)^2 )) ⇒∫_0 ^1 ((logt)/(t^2 +1))dt =−Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^2 )) =−K(katalan constant) ∫_0 ^1 ((logt)/((t+1)(t^2 +1)))dt =(1/2)∫_0 ^1 ((1/(t+1))−((t−1)/(t^2 +1)))logt dt =(1/2)∫_0 ^1 ((logt)/(t+1))dt −(1/2)∫_0 ^1 (((t−1)logt)/(t^2 +1))dt ∫_0 ^1 ((logt)/(t+1))dt =[log(t+1)logt]_0 ^1 −∫_0 ^1 ((log(t+1))/t)dt we have (d/dt)log(1+t)=(1/(1+t)) =Σ_(n=0) ^∞ (−1)^n t^n ⇒ log(1+t)=Σ_(n=0) ^∞ (−1)^n (t^(n+1) /(n+1))+c(c=0) =Σ_(n=1) ^∞ (((−1)^(n−1) t^n )/n) ⇒ ∫_0 ^1 ((log(1+t))/t)dt =Σ_(n=1) ^∞ ∫_0 ^1 (((−1)^(n−1) t^(n−1) )/n)dt =Σ_(n=1) ^∞ (((−1)^(n−1) )/n^2 ) =−Σ_(n=1) ^∞ (((−1)^n )/n^2 ) =−(2^(1−2) −1)ξ(2) =−((1/2)−1)(π^2 /6) =(π^2 /(12)) ∫_0 ^1 (((t−1)logt)/(t^2 +1))dt =∫_0 ^1 (t−1)logtΣ_(n=0) ^∞ (−1)^n t^(2n) dt =Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 (t^(2n+1) −t^(2n) )logt dt =Σ_(n=0) ^∞ (−1)^n v_n with v_n =∫_0 ^1 (t^(2n+1) −t^(2n) )logt dt =[((t^(2n+2) /(2n+2))−(t^(2n+1) /(2n+1)))logt]_0 ^1 −∫_0 ^1 ((t^(2n+1) /(2n+2))−(t^(2n) /(2n+1)))dt =−(1/((2n+2)^2 ))+(1/((2n+1)^2 )) ⇒ ∫_0 ^1 (((t−1)logt)/(t^2 +1))dt =−Σ_(n=0) ^∞ (((−1)^n )/(4(n+1)^2 ))+Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^2 )) =−(1/4)Σ_(n=1) ^∞ (((−1)^(n−1) )/n^2 )+K =(1/4)Σ_(n=1) ^∞ (((−1)^n )/n^2 )+K =(1/4)(2^(1−2) −1)ξ(2)=(1/4)(−(1/2)).(π^2 /6) =−(π^2 /(48)) rest to collect the values...](https://www.tinkutara.com/question/Q138713.png)
Answered by Kamel last updated on 17/Apr/21

Answered by qaz last updated on 17/Apr/21

Answered by Ar Brandon last updated on 17/Apr/21
