Question Number 143481 by lapache last updated on 15/Jun/21
$$\mathrm{1}−{Montrer}\:{par}\:{recurrence}\:{que}\:{la}\:{transformee}\:{deLaplace}\:{suivante} \\ $$$$\mathscr{L}\left({f}^{{n}} \left({t}\right)\right)\left({p}\right)={p}^{{n}} \mathscr{L}\left({f}\left({t}\right)\left({p}\right)−{p}^{{n}−\mathrm{1}} {f}\left(\mathrm{0}^{+} \right)−{p}^{{n}−\mathrm{2}} {f}\:'\left(\mathrm{0}^{+} \right)−…….−{f}^{\left({n}−\mathrm{1}\right)} \left(\mathrm{0}^{+} \right)\right. \\ $$$$ \\ $$$$\mathrm{2}−{Calaculer}\:{partir}\:{de}\:\mathscr{L}\left({sint}\right)\left({p}\right)\:{la}\:{transforme}\:\mathscr{L}\left(\frac{{sint}}{{t}}\right)\left({p}\right) \\ $$
Commented by Ar Brandon last updated on 15/Jun/21
$$\mathrm{Non}\:\mathrm{non}.\:\mathrm{Nous}\:\mathrm{n}'\mathrm{allons}\:\mathrm{pas}\:\mathrm{montrer}\:\mathrm{cela}. \\ $$😝
Commented by lapache last updated on 15/Jun/21
$${Alors}\:{que}\:{c}'{est}\:{meme}\:{ce}\:{que}\:{je}\:{veux} \\ $$
Commented by Ar Brandon last updated on 15/Jun/21