Menu Close

1-sec-x-dx-




Question Number 133360 by liberty last updated on 21/Feb/21
∫ (√(1+sec x)) dx ?
1+secxdx?
Commented by som(math1967) last updated on 21/Feb/21
∫(√((1+cosx)/(cosx)))dx  (√2)∫((cos(x/2))/( (√(1−2sin^2 (x/2)))))dx  =((√2)/( (√2)))∫((cos(x/2))/( (√(((1/( (√2))))^2 −sin^2 (x/2)))))dx  =2∫((cos(x/2))/( 2(√(((1/( (√2))))^2 −sin^2 (x/2)))))dx  =2∫((d(sin(x/2)))/( (√(((1/( (√2))))^2 −sin^2 (x/2)))))  =2sin^(−1) ((sin(x/2))/(1/( (√2))))+c  =2sin^(−1) (√2)sin(x/2)+c
1+cosxcosxdx2cosx212sin2x2dx=22cosx2(12)2sin2x2dx=2cosx22(12)2sin2x2dx=2d(sinx2)(12)2sin2x2=2sin1sinx212+c=2sin12sinx2+c
Commented by liberty last updated on 22/Feb/21
in other way   I = ∫ ((√(1+cos x))/( (√(cos x)))) dx   let cos x = z^2  → dx =−((2z)/(sin x)) dz   dx = −((2z)/( (√(1−cos^2 x)))) dz=−((2z)/( (√(1−z^4 )))) dz  I= ∫ ((√(1+z^2 ))/z) (−((2z)/( (√((1+z^2 )(1−z^2 )))))dz)  I=−2∫ (dz/( (√(1−z^2 )))) =−2sin^(−1) (z)+c  I=−2sin^(−1) ((√(cos x)) )+ c
inotherwayI=1+cosxcosxdxletcosx=z2dx=2zsinxdzdx=2z1cos2xdz=2z1z4dzI=1+z2z(2z(1+z2)(1z2)dz)I=2dz1z2=2sin1(z)+cI=2sin1(cosx)+c
Answered by liberty last updated on 21/Feb/21
Commented by liberty last updated on 21/Feb/21

Leave a Reply

Your email address will not be published. Required fields are marked *