Menu Close

1-Show-that-for-a-01-the-function-f-a-R-R-defined-by-f-a-x-x-a-is-a-holder-function-in-other-way-there-exist-K-gt-0-such-as-x-y-gt-0-f-a-x-f-a-y-K-x-y-a-




Question Number 75041 by ~blr237~ last updated on 06/Dec/19
1) Show that  for a∈]01]the function  f_a  :R_+ →R defined by f_a (x)=x^a    is   a−holder function  in other way  there exist  K>0 such as ∀ x,y>0   ∣f_a (x)−f_a (y)∣≤K∣x−y∣^a
1)Showthatfora]01]thefunctionfa:R+Rdefinedbyfa(x)=xaisaholderfunctioninotherwaythereexistK>0suchasx,y>0fa(x)fa(y)∣⩽Kxya
Commented by ~blr237~ last updated on 06/Dec/19
for  a∈]0,1[
fora]0,1[
Answered by mind is power last updated on 06/Dec/19
error my previous post i put inquality in wrong why  i found this new approch  x^a −y^a ≤(x−y)^a ...?  ⇔1−((y/x))^a ≤(1−(y/x))^a ,<0<y<x  t=(y/x)∈]0,1[  1−t^a ≤(1−t)^a ⇔(1−t)^a +t^a ≥1  let f_t (a)=(1−t)^a +t^a =e^(aln(1−t)) +e^(aln(t))   f′(a)=ln(1−t)e^(aln(1−t)) +ln(t)e^(aln(t)) <0,sincet∈]0,1[  ⇒f(a)≥f(1)=1−t+t=1  ⇒1≤t^a +(1−t)^a   ⇒x^a −y^a ≤∣x−y∣^a   f_a  is holder k=1
errormypreviouspostiputinqualityinwrongwhyifoundthisnewapprochxaya(xy)a?1(yx)a(1yx)a,<0<y<xt=yx]0,1[1ta(1t)a(1t)a+ta1letft(a)=(1t)a+ta=ealn(1t)+ealn(t)f(a)=ln(1t)ealn(1t)+ln(t)ealn(t)<0,sincet]0,1[f(a)f(1)=1t+t=11ta+(1t)axaya⩽∣xyafaisholderk=1

Leave a Reply

Your email address will not be published. Required fields are marked *