Menu Close

1-t-u-v-t-u-v-t-u-v-t-u-v-t-u-v-t-u-v-t-u-v-t-u-v-t-3-u-v-t-2-u-v-2-t-u-v-u-v-t-4-2-u-v-t-2-u-v-




Question Number 70780 by MJS last updated on 08/Oct/19
(1/(t+(√u)+(√v)))=  =(((t−(√u)+(√v))(t+(√u)−(√v))(t−(√u)−(√v)))/((t+(√u)+(√v))(t−(√u)+(√v))(t+(√u)−(√v))(t−(√u)−(√v))))=  =((t^3 −((√u)+(√v))t^2 −((√u)−(√v))^2 t+(u−v)((√u)−(√v)))/(t^4 −2(u+v)t^2 +(u−v)^2 ))    (1/(t+(u)^(1/3) +(v)^(1/3) ))=        determinant (((α=−(1/2)+((√3)/2)i; β=−(1/2)−((√3)/2)i ⇒)),((⇒ α^2 =β; β^2 =α; α+β=−1; αβ=1)))  =(((t+α(u)^(1/3) +β(v)^(1/3) )(t+β(u)^(1/3) +α(v)^(1/3) ))/((t+(u)^(1/3) +(v)^(1/3) )(t+α(u)^(1/3) +β(v)^(1/3) )(t+β(u)^(1/3) +α(v)^(1/3) )))=  =((t^2 −((u)^(1/3) +(v)^(1/3) )t+(u^2 )^(1/3) −((uv))^(1/3) +(v^2 )^(1/3) )/(t^3 +u+v−3((uv))^(1/3)  t))=        determinant (((a=t^3 +u+v; b=27uvt^3 )),(((1/(a−(b)^(1/3) ))=(((αa−β(b)^(1/3) )(βa−α(b)^(1/3) ))/((a−(b)^(1/3) )(αa−β(b)^(1/3) )(βa−α(b)^(1/3) )))=)),((=((a^2 +a(b)^(1/3) +(b^2 )^(1/3) )/(a^3 −b)))))  =(N/(t^9 +3(u+v)t^6 +3(u^2 −7uv+v^2 )t^3 +(u+v)^3 ))  N=  =t^8 −  −((u)^(1/3) +(v)^(1/3) )t^7 +  +((u)^(1/3) +(v)^(1/3) )^2 t^6 +  +((u)^(1/3) +(v)^(1/3) )((u)^(1/3) −2(v)^(1/3) )(2(u)^(1/3) −(v)^(1/3) )t^5 −  −((u)^(1/3) +(v)^(1/3) )^2 ((u)^(1/3) −2(v)^(1/3) )(2(u)^(1/3) −(v)^(1/3) )t^4 +  +((u)^(1/3) +(v)^(1/3) )^3 ((u)^(1/3) −2(v)^(1/3) )(2(u)^(1/3) −(v)^(1/3) )t^3 +  +((u^2 )^(1/3) −((uv))^(1/3) +(v^2 )^(1/3) )^3 t^2 −  −((u)^(1/3) +(v)^(1/3) )((u^2 )^(1/3) −((uv))^(1/3) +(v^2 )^(1/3) )^3 t+  +((u)^(1/3) +(v)^(1/3) )^2 ((u^2 )^(1/3) −((uv))^(1/3) +(v^2 )^(1/3) )^3     I think there′s no easier way...
1t+u+v==(tu+v)(t+uv)(tuv)(t+u+v)(tu+v)(t+uv)(tuv)==t3(u+v)t2(uv)2t+(uv)(uv)t42(u+v)t2+(uv)21t+u3+v3=|α=12+32i;β=1232iα2=β;β2=α;α+β=1;αβ=1|=(t+αu3+βv3)(t+βu3+αv3)(t+u3+v3)(t+αu3+βv3)(t+βu3+αv3)==t2(u3+v3)t+u23uv3+v23t3+u+v3uv3t=|a=t3+u+v;b=27uvt31ab3=(αaβb3)(βaαb3)(ab3)(αaβb3)(βaαb3)==a2+ab3+b23a3b|=Nt9+3(u+v)t6+3(u27uv+v2)t3+(u+v)3N==t8(u3+v3)t7++(u3+v3)2t6++(u3+v3)(u32v3)(2u3v3)t5(u3+v3)2(u32v3)(2u3v3)t4++(u3+v3)3(u32v3)(2u3v3)t3++(u23uv3+v23)3t2(u3+v3)(u23uv3+v23)3t++(u3+v3)2(u23uv3+v23)3Ithinktheresnoeasierway
Commented by MJS last updated on 08/Oct/19
this had been requested (but deleted)  (1/(1+2(3)^(1/3) +3(2)^(1/3) ))=  =((−8208((36))^(1/3) +2988((18))^(1/3) −378((12))^(1/3) +23020(9)^(1/3) −36024(6)^(1/3) +54225(4)^(1/3) +13114(3)^(1/3) −1659(2)^(1/3) −5423)/(458047))
thishadbeenrequested(butdeleted)11+233+323==8208363+2988183378123+23020933602463+5422543+13114331659235423458047

Leave a Reply

Your email address will not be published. Required fields are marked *