Question Number 70780 by MJS last updated on 08/Oct/19
$$\frac{\mathrm{1}}{{t}+\sqrt{{u}}+\sqrt{{v}}}= \\ $$$$=\frac{\left({t}−\sqrt{{u}}+\sqrt{{v}}\right)\left({t}+\sqrt{{u}}−\sqrt{{v}}\right)\left({t}−\sqrt{{u}}−\sqrt{{v}}\right)}{\left({t}+\sqrt{{u}}+\sqrt{{v}}\right)\left({t}−\sqrt{{u}}+\sqrt{{v}}\right)\left({t}+\sqrt{{u}}−\sqrt{{v}}\right)\left({t}−\sqrt{{u}}−\sqrt{{v}}\right)}= \\ $$$$=\frac{{t}^{\mathrm{3}} −\left(\sqrt{{u}}+\sqrt{{v}}\right){t}^{\mathrm{2}} −\left(\sqrt{{u}}−\sqrt{{v}}\right)^{\mathrm{2}} {t}+\left({u}−{v}\right)\left(\sqrt{{u}}−\sqrt{{v}}\right)}{{t}^{\mathrm{4}} −\mathrm{2}\left({u}+{v}\right){t}^{\mathrm{2}} +\left({u}−{v}\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$\frac{\mathrm{1}}{{t}+\sqrt[{\mathrm{3}}]{{u}}+\sqrt[{\mathrm{3}}]{{v}}}= \\ $$$$\:\:\:\:\:\begin{vmatrix}{\alpha=−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i};\:\beta=−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\:\Rightarrow}\\{\Rightarrow\:\alpha^{\mathrm{2}} =\beta;\:\beta^{\mathrm{2}} =\alpha;\:\alpha+\beta=−\mathrm{1};\:\alpha\beta=\mathrm{1}}\end{vmatrix} \\ $$$$=\frac{\left({t}+\alpha\sqrt[{\mathrm{3}}]{{u}}+\beta\sqrt[{\mathrm{3}}]{{v}}\right)\left({t}+\beta\sqrt[{\mathrm{3}}]{{u}}+\alpha\sqrt[{\mathrm{3}}]{{v}}\right)}{\left({t}+\sqrt[{\mathrm{3}}]{{u}}+\sqrt[{\mathrm{3}}]{{v}}\right)\left({t}+\alpha\sqrt[{\mathrm{3}}]{{u}}+\beta\sqrt[{\mathrm{3}}]{{v}}\right)\left({t}+\beta\sqrt[{\mathrm{3}}]{{u}}+\alpha\sqrt[{\mathrm{3}}]{{v}}\right)}= \\ $$$$=\frac{{t}^{\mathrm{2}} −\left(\sqrt[{\mathrm{3}}]{{u}}+\sqrt[{\mathrm{3}}]{{v}}\right){t}+\sqrt[{\mathrm{3}}]{{u}^{\mathrm{2}} }−\sqrt[{\mathrm{3}}]{{uv}}+\sqrt[{\mathrm{3}}]{{v}^{\mathrm{2}} }}{{t}^{\mathrm{3}} +{u}+{v}−\mathrm{3}\sqrt[{\mathrm{3}}]{{uv}}\:{t}}= \\ $$$$\:\:\:\:\:\begin{vmatrix}{{a}={t}^{\mathrm{3}} +{u}+{v};\:{b}=\mathrm{27}{uvt}^{\mathrm{3}} }\\{\frac{\mathrm{1}}{{a}−\sqrt[{\mathrm{3}}]{{b}}}=\frac{\left(\alpha{a}−\beta\sqrt[{\mathrm{3}}]{{b}}\right)\left(\beta{a}−\alpha\sqrt[{\mathrm{3}}]{{b}}\right)}{\left({a}−\sqrt[{\mathrm{3}}]{{b}}\right)\left(\alpha{a}−\beta\sqrt[{\mathrm{3}}]{{b}}\right)\left(\beta{a}−\alpha\sqrt[{\mathrm{3}}]{{b}}\right)}=}\\{=\frac{{a}^{\mathrm{2}} +{a}\sqrt[{\mathrm{3}}]{{b}}+\sqrt[{\mathrm{3}}]{{b}^{\mathrm{2}} }}{{a}^{\mathrm{3}} −{b}}}\end{vmatrix} \\ $$$$=\frac{{N}}{{t}^{\mathrm{9}} +\mathrm{3}\left({u}+{v}\right){t}^{\mathrm{6}} +\mathrm{3}\left({u}^{\mathrm{2}} −\mathrm{7}{uv}+{v}^{\mathrm{2}} \right){t}^{\mathrm{3}} +\left({u}+{v}\right)^{\mathrm{3}} } \\ $$$${N}= \\ $$$$={t}^{\mathrm{8}} − \\ $$$$−\left(\sqrt[{\mathrm{3}}]{{u}}+\sqrt[{\mathrm{3}}]{{v}}\right){t}^{\mathrm{7}} + \\ $$$$+\left(\sqrt[{\mathrm{3}}]{{u}}+\sqrt[{\mathrm{3}}]{{v}}\right)^{\mathrm{2}} {t}^{\mathrm{6}} + \\ $$$$+\left(\sqrt[{\mathrm{3}}]{{u}}+\sqrt[{\mathrm{3}}]{{v}}\right)\left(\sqrt[{\mathrm{3}}]{{u}}−\mathrm{2}\sqrt[{\mathrm{3}}]{{v}}\right)\left(\mathrm{2}\sqrt[{\mathrm{3}}]{{u}}−\sqrt[{\mathrm{3}}]{{v}}\right){t}^{\mathrm{5}} − \\ $$$$−\left(\sqrt[{\mathrm{3}}]{{u}}+\sqrt[{\mathrm{3}}]{{v}}\right)^{\mathrm{2}} \left(\sqrt[{\mathrm{3}}]{{u}}−\mathrm{2}\sqrt[{\mathrm{3}}]{{v}}\right)\left(\mathrm{2}\sqrt[{\mathrm{3}}]{{u}}−\sqrt[{\mathrm{3}}]{{v}}\right){t}^{\mathrm{4}} + \\ $$$$+\left(\sqrt[{\mathrm{3}}]{{u}}+\sqrt[{\mathrm{3}}]{{v}}\right)^{\mathrm{3}} \left(\sqrt[{\mathrm{3}}]{{u}}−\mathrm{2}\sqrt[{\mathrm{3}}]{{v}}\right)\left(\mathrm{2}\sqrt[{\mathrm{3}}]{{u}}−\sqrt[{\mathrm{3}}]{{v}}\right){t}^{\mathrm{3}} + \\ $$$$+\left(\sqrt[{\mathrm{3}}]{{u}^{\mathrm{2}} }−\sqrt[{\mathrm{3}}]{{uv}}+\sqrt[{\mathrm{3}}]{{v}^{\mathrm{2}} }\right)^{\mathrm{3}} {t}^{\mathrm{2}} − \\ $$$$−\left(\sqrt[{\mathrm{3}}]{{u}}+\sqrt[{\mathrm{3}}]{{v}}\right)\left(\sqrt[{\mathrm{3}}]{{u}^{\mathrm{2}} }−\sqrt[{\mathrm{3}}]{{uv}}+\sqrt[{\mathrm{3}}]{{v}^{\mathrm{2}} }\right)^{\mathrm{3}} {t}+ \\ $$$$+\left(\sqrt[{\mathrm{3}}]{{u}}+\sqrt[{\mathrm{3}}]{{v}}\right)^{\mathrm{2}} \left(\sqrt[{\mathrm{3}}]{{u}^{\mathrm{2}} }−\sqrt[{\mathrm{3}}]{{uv}}+\sqrt[{\mathrm{3}}]{{v}^{\mathrm{2}} }\right)^{\mathrm{3}} \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{there}'\mathrm{s}\:\mathrm{no}\:\mathrm{easier}\:\mathrm{way}… \\ $$
Commented by MJS last updated on 08/Oct/19
$$\mathrm{this}\:\mathrm{had}\:\mathrm{been}\:\mathrm{requested}\:\left(\mathrm{but}\:\mathrm{deleted}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{3}}+\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{2}}}= \\ $$$$=\frac{−\mathrm{8208}\sqrt[{\mathrm{3}}]{\mathrm{36}}+\mathrm{2988}\sqrt[{\mathrm{3}}]{\mathrm{18}}−\mathrm{378}\sqrt[{\mathrm{3}}]{\mathrm{12}}+\mathrm{23020}\sqrt[{\mathrm{3}}]{\mathrm{9}}−\mathrm{36024}\sqrt[{\mathrm{3}}]{\mathrm{6}}+\mathrm{54225}\sqrt[{\mathrm{3}}]{\mathrm{4}}+\mathrm{13114}\sqrt[{\mathrm{3}}]{\mathrm{3}}−\mathrm{1659}\sqrt[{\mathrm{3}}]{\mathrm{2}}−\mathrm{5423}}{\mathrm{458047}} \\ $$