Menu Close

1-x-1-6x-2-1-5x-1-24x-2-x-Limit-x-please-help-




Question Number 5343 by sanusihammed last updated on 09/May/16
[((1−x^(−1) −6x^(−2) )/(1−5x^(−1) −24x^(−2) ))]^x     Limit x → ∞    please help.
[1x16x215x124x2]xLimitxpleasehelp.
Commented by Yozzii last updated on 09/May/16
Let u=x^(−1)   l=lim_(x→∞) (((1−x^(−1) −6x^(−2) )/(1−5x^(−1) −24x^(−2) )))^x =lim_(u→0) (((1−u−6u^2 )/(1−5u−24u^2 )))^(1/u)   l=lim_(u→0) exp((1/u){ln(1+u(−1−6u)−ln(1+u(−5−24u)})  l=exp(lim_(u→0) (1/u)ln(1+u(−1−6u))−lim_(u→0) (1/u)ln(1+u(−5−24u)))  Since ln(1+x)=x−(x^2 /2)+(x^3 /3)−(x^4 /4)+....  ⇒lim_(u→0) (1/u)ln(1+u(−1−6u))=lim_(u→0) ((1/u)u(−1−6u)−((u(1+6u)^2 )/2)+((u^2 (−1−6u)^3 )/3)−....)=−1−0+0−0+...=−1.=  Similarly, lim_(u→0) (1/u)ln(1+u(−5−24u))=−5.  ∴ l=exp(−1−(−5))=e^4 .
Letu=x1l=limx(1x16x215x124x2)x=limu0(1u6u215u24u2)1/ul=limu0exp(1u{ln(1+u(16u)ln(1+u(524u)})l=exp(limu01uln(1+u(16u))limu01uln(1+u(524u)))Sinceln(1+x)=xx22+x33x44+.limu01uln(1+u(16u))=limu0(1uu(16u)u(1+6u)22+u2(16u)33.)=10+00+=1.=Similarly,limu01uln(1+u(524u))=5.l=exp(1(5))=e4.
Commented by sanusihammed last updated on 09/May/16
Thanks so much
Thankssomuch

Leave a Reply

Your email address will not be published. Required fields are marked *