Menu Close

1-x-2023-1-x-x-2-2022-a-0-a-1-x-a-2-x-2-a-6067-x-6067-also-if-the-equations-a-n-1-mod-5-a-n-2-mod-5-n-0-1-2-6067-has-u-and-v-solutions-respectivley-then-prove-that-




Question Number 140606 by mathsuji last updated on 10/May/21
(1+x)^(2023) (1−x+x^2 )^(2022) =a_0 +a_1 x+a_2 x^2 +...+a_(6067) x^(6067)   also if the equations  a_n ≡ 1(mod 5) , a_n ≡ 2(mod 5) , n=0;1;2;...;6067  has u and v solutions respectivley,  then prove that...  (√(1+2(√(1+3(√(1+4(√(1+...)))))))) = (√(1+u∙v))
(1+x)2023(1x+x2)2022=a0+a1x+a2x2++a6067x6067alsoiftheequationsan1(mod5),an2(mod5),n=0;1;2;;6067hasuandvsolutionsrespectivley,thenprovethat1+21+31+41+=1+uv
Commented by mathsuji last updated on 10/May/21
Sir mr.W pliz...
Sirmr.Wpliz
Commented by mr W last updated on 10/May/21
(√(1+2(√(1+3(√(1+4(√(1+...)))))))) = 3  a_n =C_k ^(2022)  with n=3k, k=0,1,..,2022  a_n =C_k ^(2022)  with n=3k+1  we have 4 times a_n  with a_n ≡1 mod 5,  i.e. 2 times C_0 ^(2022)  and 2 times C_2 ^(2022) .  we have 2 times a_n  with a_n ≡2 mod 5,  i.e. 2 times C_1 ^(2022) .  that means u=4, v=2  (√(1+uv))=(√(1+4×2))=3
1+21+31+41+=3an=Ck2022withn=3k,k=0,1,..,2022an=Ck2022withn=3k+1wehave4timesanwithan1mod5,i.e.2timesC02022and2timesC22022.wehave2timesanwithan2mod5,i.e.2timesC12022.thatmeansu=4,v=21+uv=1+4×2=3
Commented by mathsuji last updated on 10/May/21
perfect Sir thanks
perfectSirthanks

Leave a Reply

Your email address will not be published. Required fields are marked *