Menu Close

1-x-x-2-x-49-1-2-x-49-1-x-Find-the-value-of-x-




Question Number 12797 by tawa last updated on 01/May/17
1 + x + x^2  + ... x^(49)  = (1/2)(x^(49)  − (1/x))  Find the value of x
$$\mathrm{1}\:+\:\mathrm{x}\:+\:\mathrm{x}^{\mathrm{2}} \:+\:…\:\mathrm{x}^{\mathrm{49}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{x}^{\mathrm{49}} \:−\:\frac{\mathrm{1}}{\mathrm{x}}\right) \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x} \\ $$
Commented by prakash jain last updated on 01/May/17
((x^(50) −1)/(x−1))=(1/2)(((x^(50) −1)/x))  x≠1,x≠0  (x^(50) −1)2x=(x−1)(x^(50) −1)  (x^(50) −1)(x+1)=0  x=−1  x^(50) =1⇒x=cos ((2kπ)/(50))+isin ((2kπ)/(50))   k=1,2,...,49  k=0⇒x=1, invalid since x≠1
$$\frac{{x}^{\mathrm{50}} −\mathrm{1}}{{x}−\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{x}^{\mathrm{50}} −\mathrm{1}}{{x}}\right) \\ $$$${x}\neq\mathrm{1},{x}\neq\mathrm{0} \\ $$$$\left({x}^{\mathrm{50}} −\mathrm{1}\right)\mathrm{2}{x}=\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{50}} −\mathrm{1}\right) \\ $$$$\left({x}^{\mathrm{50}} −\mathrm{1}\right)\left({x}+\mathrm{1}\right)=\mathrm{0} \\ $$$${x}=−\mathrm{1} \\ $$$${x}^{\mathrm{50}} =\mathrm{1}\Rightarrow{x}=\mathrm{cos}\:\frac{\mathrm{2}{k}\pi}{\mathrm{50}}+{i}\mathrm{sin}\:\frac{\mathrm{2}{k}\pi}{\mathrm{50}}\: \\ $$$${k}=\mathrm{1},\mathrm{2},…,\mathrm{49} \\ $$$${k}=\mathrm{0}\Rightarrow{x}=\mathrm{1},\:{invalid}\:{since}\:{x}\neq\mathrm{1} \\ $$
Commented by tawa last updated on 01/May/17
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 01/May/17
2(x^(50) −1)=(x−1)(x^(50) −1)/x⇒  2x=x−1⇒x=−1  .■  if :x^(50) −1=0⇒ there is no solotion for x.
$$\mathrm{2}\left({x}^{\mathrm{50}} −\mathrm{1}\right)=\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{50}} −\mathrm{1}\right)/{x}\Rightarrow \\ $$$$\mathrm{2}{x}={x}−\mathrm{1}\Rightarrow{x}=−\mathrm{1}\:\:.\blacksquare \\ $$$${if}\::{x}^{\mathrm{50}} −\mathrm{1}=\mathrm{0}\Rightarrow\:{there}\:{is}\:{no}\:{solotion}\:{for}\:{x}. \\ $$
Commented by tawa last updated on 01/May/17
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *