Menu Close

1-x-x-3-dx-1-pi-2-12-




Question Number 143728 by Dwaipayan Shikari last updated on 17/Jun/21
∫_1 ^∞ (({x})/x^3 )dx=1−(π^2 /(12))
1{x}x3dx=1π212
Answered by mathmax by abdo last updated on 17/Jun/21
I=∫_1 ^∞  (({x})/x^3 )dx =∫_1 ^∞ ((x−[x])/x^3 )dx=∫_1 ^∞  (dx/x^2 )−∫_1 ^∞  (([x])/x^3 )dx  =[−(1/x)]_1 ^∞ −∫_1 ^∞  (([x])/x^3 )dx=1−∫_1 ^∞  (([x])/x^3 )dx  we have  ∫_1 ^∞  (([x])/x^3 )dx =Σ_(n=1) ^∞  ∫_n ^(n+1)  (n/x^3 )dx =Σ_(n=1) ^∞  n[(1/(−3+1))x^(−3+1) ]_n ^(n+1)   =Σ_(n=1) ^∞ n[−(1/(2x^2 ))]_n ^(n+1) =−(1/2)Σ_(n=1) ^∞ n{(1/n^2 )−(1/((n+1)^2 ))}  =−(1/2)Σ_(n=1) ^∞ n×(((n+1)^2 −n^2 )/(n^2 (n+1)^2 ))=−(1/2)Σ_(n=1) ^∞  ((2n+1)/(n(n+1)^2 ))  ((2x+1)/(x(x+1)^2 ))=(a/x)+(b/(x+1))+(c/((x+1)^2 ))  a=1 ,c=1   lim_(x→+∞) xf(x)=0 =a+b ⇒b=−1 ⇒  ((2n+1)/(n(n+1)^2 ))=(1/n)−(1/(n+1)) +(1/((n+1)^2 )) ⇒  Σ_(n=1) ^∞ ((2n+1)/(n(n+1)^2 ))=Σ_(n=1) ^∞ ((1/n)−(1/(n+1)))+Σ_(n=1) ^∞  (1/((n+1)^2 ))  =lim_(n→+∞) Σ_(k=1) ^n ((1/k)−(1/(k+1)))+Σ_(n=2) ^∞  (1/n^2 )  =1+(π^2 /6)−1 =(π^2 /6) ⇒I =−(1/2)((π^2 /6))=−(π^2 /(12))
I=1{x}x3dx=1x[x]x3dx=1dxx21[x]x3dx=[1x]11[x]x3dx=11[x]x3dxwehave1[x]x3dx=n=1nn+1nx3dx=n=1n[13+1x3+1]nn+1=n=1n[12x2]nn+1=12n=1n{1n21(n+1)2}=12n=1n×(n+1)2n2n2(n+1)2=12n=12n+1n(n+1)22x+1x(x+1)2=ax+bx+1+c(x+1)2a=1,c=1limx+xf(x)=0=a+bb=12n+1n(n+1)2=1n1n+1+1(n+1)2n=12n+1n(n+1)2=n=1(1n1n+1)+n=11(n+1)2=limn+k=1n(1k1k+1)+n=21n2=1+π261=π26I=12(π26)=π212
Commented by mathmax by abdo last updated on 17/Jun/21
I=1−(π^2 /(12))
I=1π212
Commented by Dwaipayan Shikari last updated on 17/Jun/21
Thanks sir
Thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *