1-x-x-3-dx-1-pi-2-12- Tinku Tara June 3, 2023 Others 0 Comments FacebookTweetPin Question Number 143728 by Dwaipayan Shikari last updated on 17/Jun/21 ∫1∞{x}x3dx=1−π212 Answered by mathmax by abdo last updated on 17/Jun/21 I=∫1∞{x}x3dx=∫1∞x−[x]x3dx=∫1∞dxx2−∫1∞[x]x3dx=[−1x]1∞−∫1∞[x]x3dx=1−∫1∞[x]x3dxwehave∫1∞[x]x3dx=∑n=1∞∫nn+1nx3dx=∑n=1∞n[1−3+1x−3+1]nn+1=∑n=1∞n[−12x2]nn+1=−12∑n=1∞n{1n2−1(n+1)2}=−12∑n=1∞n×(n+1)2−n2n2(n+1)2=−12∑n=1∞2n+1n(n+1)22x+1x(x+1)2=ax+bx+1+c(x+1)2a=1,c=1limx→+∞xf(x)=0=a+b⇒b=−1⇒2n+1n(n+1)2=1n−1n+1+1(n+1)2⇒∑n=1∞2n+1n(n+1)2=∑n=1∞(1n−1n+1)+∑n=1∞1(n+1)2=limn→+∞∑k=1n(1k−1k+1)+∑n=2∞1n2=1+π26−1=π26⇒I=−12(π26)=−π212 Commented by mathmax by abdo last updated on 17/Jun/21 I=1−π212 Commented by Dwaipayan Shikari last updated on 17/Jun/21 Thankssir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-lim-x-0-sin-sin-1-cosx-1-cos-x-sinx-x-3-Next Next post: Calculus-dx-x-2-e-a-x-2-a-gt-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.