Question Number 12377 by tawa last updated on 20/Apr/17
$$\int\:\:\frac{\sqrt{\mathrm{1}\:+\:\sqrt{\mathrm{x}}}}{\mathrm{x}}\:\:\mathrm{dx} \\ $$
Answered by mrW1 last updated on 21/Apr/17
$${t}^{\mathrm{2}} =\sqrt{{x}} \\ $$$${t}^{\mathrm{4}} ={x} \\ $$$$\mathrm{4}{t}^{\mathrm{3}} {dt}={dx} \\ $$$${I}=\int\frac{\sqrt{\mathrm{1}+\sqrt{{x}}}}{{x}}{dx}=\int\frac{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{{t}^{\mathrm{4}} }×\mathrm{4}{t}^{\mathrm{3}} {dt} \\ $$$$=\mathrm{4}\int\frac{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{{t}}{dt}=\mathrm{2}\int\frac{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{{t}^{\mathrm{2}} }{d}\left({t}^{\mathrm{2}} \right) \\ $$$$=\mathrm{2}\int\frac{\sqrt{\mathrm{1}+{s}}}{{s}}{ds}\:\:\:\:\:\:\:\left({s}={t}^{\mathrm{2}} =\sqrt{{x}}\right) \\ $$$$ \\ $$$$\int\frac{\sqrt{\mathrm{1}+{s}}}{{s}}{ds}=\mathrm{2}\sqrt{\mathrm{1}+{s}}+\mathrm{ln}\:\frac{\sqrt{\mathrm{1}+{s}}−\mathrm{1}}{\:\sqrt{\mathrm{1}+{s}}+\mathrm{1}}+{C} \\ $$$$ \\ $$$${I}=\mathrm{4}\sqrt{\mathrm{1}+{s}}+\mathrm{2ln}\:\frac{\sqrt{\mathrm{1}+{s}}−\mathrm{1}}{\:\sqrt{\mathrm{1}+{s}}+\mathrm{1}}+{C} \\ $$$$=\mathrm{4}\sqrt{\mathrm{1}+\sqrt{{x}}}+\mathrm{2ln}\:\frac{\sqrt{\mathrm{1}+\sqrt{{x}}}−\mathrm{1}}{\:\sqrt{\mathrm{1}+\sqrt{{x}}}+\mathrm{1}}+{C} \\ $$
Commented by tawa last updated on 21/Apr/17
$$\mathrm{wow}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Answered by ajfour last updated on 21/Apr/17
$${let}\:\:{x}=\mathrm{tan}\:^{\mathrm{4}} {t}\Rightarrow\:{dx}=\mathrm{4tan}\:^{\mathrm{3}} {t}\mathrm{sec}\:^{\mathrm{2}} {t} \\ $$$$\int\frac{\sqrt{\mathrm{1}+\sqrt{{x}}}}{{x}}{dx}\:=\int\frac{\left(\mathrm{sec}\:{t}\right)\left(\mathrm{4tan}\:^{\mathrm{3}} {t}\mathrm{sec}\:^{\mathrm{2}} {t}\right)}{\mathrm{tan}\:^{\mathrm{4}} {t}}{dt} \\ $$$$=\mathrm{4}\int\mathrm{cosec}\:{t}\mathrm{sec}\:^{\mathrm{2}} {tdt} \\ $$$$=\mathrm{4}\left[\mathrm{cosec}\:{t}\mathrm{tan}\:{t}−\int\mathrm{tan}\:{t}\left(−\mathrm{cosec}\:{t}\mathrm{cot}\:{t}\right){dt}\right] \\ $$$$=\mathrm{4}\left[\frac{\mathrm{1}}{\mathrm{cos}\:{t}}\:+\:\int\mathrm{cosec}\:{tdt}\right]+{c} \\ $$$$=\mathrm{4}\sqrt{\mathrm{1}+\sqrt{{x}}}\:+\mathrm{4ln}\:\mid\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{{x}}}}\:−\sqrt{\frac{\mathrm{1}}{\:\sqrt{{x}}}}\:\mid+{c}' \\ $$$$=\:\mathrm{4}\sqrt{\mathrm{1}+\sqrt{{x}}}\:+\mathrm{4ln}\:\mid\sqrt{\mathrm{1}+\sqrt{{x}}}\:−\mathrm{1}\mid−\mathrm{ln}\:\mid{x}\mid+{c}'\:. \\ $$
Commented by tawa last updated on 21/Apr/17
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 21/Apr/17
$${x}={cos}^{\mathrm{2}} \theta\Rightarrow{dx}=−\mathrm{2}{sin}\theta{cos}\theta{d}\theta \\ $$$${I}=\int\frac{\sqrt{\mathrm{1}+{cos}\theta}}{{cos}^{\mathrm{2}} \theta}{d}\theta=\sqrt{\mathrm{2}}\int\frac{{cos}\frac{\theta}{\mathrm{2}}}{{cos}^{\mathrm{2}} \theta}\left(−\mathrm{2}{sin}\theta{cos}\theta\right){d}\theta \\ $$$$=−\mathrm{4}\sqrt{\mathrm{2}}\int\frac{{cos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}{sin}\frac{\theta}{\mathrm{2}}}{\mathrm{2}{cos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}−\mathrm{1}}{d}\theta=\mathrm{8}\sqrt{\mathrm{2}}\int\frac{\varphi^{\mathrm{2}} {d}\varphi}{\mathrm{2}\varphi^{\mathrm{2}} −\mathrm{1}}= \\ $$$$\mathrm{4}\sqrt{\mathrm{2}}\int\frac{\left(\mathrm{2}\varphi^{\mathrm{2}} −\mathrm{1}\right)+\mathrm{1}}{\mathrm{2}\varphi^{\mathrm{2}} −\mathrm{1}}{d}\varphi=\mathrm{4}\sqrt{\mathrm{2}}\int\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}\varphi^{\mathrm{2}} −\mathrm{1}}\right){d}\varphi= \\ $$$$=\mathrm{4}\sqrt{\mathrm{2}}\left[\varphi−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\left(\left(\sqrt{\mathrm{2}}\varphi−\mathrm{1}\right)−\left(\sqrt{\mathrm{2}}\varphi+\mathrm{1}\right)\right)}{\left(\sqrt{\mathrm{2}}\varphi−\mathrm{1}\right)\left(\sqrt{\mathrm{2}}\varphi+\mathrm{1}\right)}{d}\varphi\right]= \\ $$$$=\mathrm{4}\sqrt{\mathrm{2}}\left[\varphi−\frac{\mathrm{1}}{\mathrm{2}}\int\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\varphi+\mathrm{1}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\varphi−\mathrm{1}}\right){d}\varphi\right]= \\ $$$$=\mathrm{4}\sqrt{\mathrm{2}}\left[\varphi−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{ln}\frac{\sqrt{\mathrm{2}}\varphi+\mathrm{1}}{\:\sqrt{\mathrm{2}}\varphi−\mathrm{1}}\right]+{C}= \\ $$$$=\mathrm{4}\sqrt{\mathrm{2}}{cos}\frac{\theta}{\mathrm{2}}−\mathrm{2}{ln}\frac{\sqrt{\mathrm{2}}{cos}\frac{\theta}{\mathrm{2}}+\mathrm{1}}{\:\sqrt{\mathrm{2}}{cos}\frac{\theta}{\mathrm{2}}−\mathrm{1}}+{C} \\ $$$${cos}^{\mathrm{2}} \theta={x}\Rightarrow{cos}\theta=\sqrt{{x}}\Rightarrow\mathrm{2}{cos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}=\mathrm{1}+\sqrt{{x}} \\ $$$${cos}\frac{\theta}{\mathrm{2}}=\frac{\sqrt{\mathrm{1}+\sqrt{\boldsymbol{{x}}}}}{\:\sqrt{\mathrm{2}}} \\ $$$$\boldsymbol{{I}}=\mathrm{4}\sqrt{\mathrm{2}}\frac{\sqrt{\mathrm{1}+\sqrt{\boldsymbol{{x}}}}}{\:\sqrt{\mathrm{2}}}−\mathrm{2}\boldsymbol{{ln}}\frac{\sqrt{\mathrm{2}}\frac{\sqrt{\mathrm{1}+\sqrt{\boldsymbol{{x}}}}}{\:\sqrt{\mathrm{2}}}+\mathrm{1}}{\:\sqrt{\mathrm{2}}\frac{\sqrt{\mathrm{1}+\sqrt{\boldsymbol{{x}}}}}{\:\sqrt{\mathrm{2}}}−\mathrm{1}}+\boldsymbol{{C}}= \\ $$$${I}=\mathrm{4}\sqrt{\mathrm{1}+\sqrt{\boldsymbol{{x}}}}−\mathrm{2}\boldsymbol{{ln}}\left(\frac{\sqrt{\mathrm{1}+\sqrt{\boldsymbol{{x}}}}+\mathrm{1}}{\:\sqrt{\mathrm{1}+\sqrt{\boldsymbol{{x}}}}−\mathrm{1}}\right)+\boldsymbol{{C}}\:.\blacksquare \\ $$
Commented by tawa last updated on 21/Apr/17
$$\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir}. \\ $$
Commented by tawa last updated on 21/Apr/17
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$