Menu Close

1-z-a-bi-2-z-re-i-express-the-values-of-a-real-z-z-real-part-b-imag-z-z-imaginary-part-c-abs-z-z-absolute-value-d-arg-z-z-argument-angle-




Question Number 67992 by MJS last updated on 03/Sep/19
(1) z=a+bi  (2) z=re^(iθ)   express the values of  (a) real (z^z )     [real part]  (b) imag (z^z )     [imaginary part]  (c) abs (z^z )     [absolute value]  (d) arg (z^z )     [argument = angle]
(1)z=a+bi(2)z=reiθexpressthevaluesof(a)real(zz)[realpart](b)imag(zz)[imaginarypart](c)abs(zz)[absolutevalue](d)arg(zz)[argument=angle]
Answered by mr W last updated on 03/Sep/19
let A=z^z   ln A=z ln z=(a+bi)(ln r+iθ)  =(aln r−bθ)+(aθ+bln r)i  A=e^(aln r−bθ) e^((aθ+bln r)i)   =e^(aln r−bθ) {cos (aθ+bln r)+i sin (aθ×bln r)}    real (z^z )=e^(aln r−bθ) cos (aθ+bln r)  imag (z^z )=e^(aln r−bθ) sin (aθ+bln r)  abs (z^z )=e^(aln r−bθ)   arg (z^z )=aθ+bln r
letA=zzlnA=zlnz=(a+bi)(lnr+iθ)=(alnrbθ)+(aθ+blnr)iA=ealnrbθe(aθ+blnr)i=ealnrbθ{cos(aθ+blnr)+isin(aθ×blnr)}real(zz)=ealnrbθcos(aθ+blnr)imag(zz)=ealnrbθsin(aθ+blnr)abs(zz)=ealnrbθarg(zz)=aθ+blnr
Commented by MJS last updated on 03/Sep/19
thank you  funny, I did it exactly the same way, had been  unsure if I′m right...
thankyoufunny,Ididitexactlythesameway,hadbeenunsureifImright

Leave a Reply

Your email address will not be published. Required fields are marked *