Menu Close

1-z-n-1-z-n-where-z-is-a-complex-number-




Question Number 139052 by EnterUsername last updated on 21/Apr/21
(1+z)^n =(1−z)^n   where z is a complex number
(1+z)n=(1z)nwherezisacomplexnumber
Answered by mathmax by abdo last updated on 21/Apr/21
z=−1 is not solution  let z≠−1  e⇒(((1−z)/(1+z)))^n =1 =e^(i(2kπ))  ⇒((1−z)/(1+z))=e^(i(((2kπ)/n)))        k∈[[0,n−1]]  ⇒1−z=e^((2ikπ)/n)  +e^((2ikπ)/n) z ⇒1−e^((2ikπ)/n)  =(1+e^((2ikπ)/n) )z ⇒  z_k =((1−e^((2ikπ)/n) )/(1+e^((2ikπ)/n) )) =((1−cos(((2kπ)/n))−isin(((2kπ)/n)))/(1+cos(((2kπ)/n))+isin(((2kπ)/n))))  =((2sin^2 (((kπ)/n))−2isin(((kπ)/n))cos(((kπ)/n)))/(2cos^2 (((kπ)/n))+2isin(((kπ)/n))cos(((kπ)/n)))) =((−isin(((kπ)/n))e^((ikπ)/n) )/(cos(((kπ)/n))e^((ikπ)/n) )) =−itan(((kπ)/n))  so the solution of this equation are z_k =−itan(((kπ)/n))  k∈[0,n−1]]
z=1isnotsolutionletz1e(1z1+z)n=1=ei(2kπ)1z1+z=ei(2kπn)k[[0,n1]]1z=e2ikπn+e2ikπnz1e2ikπn=(1+e2ikπn)zzk=1e2ikπn1+e2ikπn=1cos(2kπn)isin(2kπn)1+cos(2kπn)+isin(2kπn)=2sin2(kπn)2isin(kπn)cos(kπn)2cos2(kπn)+2isin(kπn)cos(kπn)=isin(kπn)eikπncos(kπn)eikπn=itan(kπn)sothesolutionofthisequationarezk=itan(kπn)k[0,n1]]

Leave a Reply

Your email address will not be published. Required fields are marked *