Menu Close

10-3-11-3-12-3-20-3-Is-there-any-ways-to-count-the-sum-of-that-sequence-without-sum-them-manually-




Question Number 12107 by Joel576 last updated on 13/Apr/17
10^3  + 11^3  + 12^3  + ... + 20^3   Is there any ways to count the sum   of that sequence without sum them manually?
103+113+123++203Isthereanywaystocountthesumofthatsequencewithoutsumthemmanually?
Commented by FilupS last updated on 13/Apr/17
=2^3 5^3 +11^3 +2^3 6^3 +13^3 +2^3 7^3 +15^3      +2^3 8^3 +17^3 +2^3 9^3 +19^3 +2^3 10^3   =2^3 (5^3 +6^3 +7^3 +8^3 +9^3 +10^3 )     +(11^3 +13^3 +15^3 +17^3 +19^3 )  =2^3 Σ_(n=5) ^(10) n^3 +Σ_(m=5) ^9 (2m+1)^3   =2^3 Σ_(n=5) ^(10) n^3 +Σ_(m=5) ^(10) (2m+1)^3 −21  working
=2353+113+2363+133+2373+153+2383+173+2393+193+23103=23(53+63+73+83+93+103)+(113+133+153+173+193)=2310n=5n3+9m=5(2m+1)3=2310n=5n3+10m=5(2m+1)321working
Commented by Joel576 last updated on 14/Apr/17
but how to count [Σ_(m=5) ^(10) (2m + 1)^3 ] − 21^3   without adding them manually?
buthowtocount[10m=5(2m+1)3]213withoutaddingthemmanually?
Answered by mrW1 last updated on 13/Apr/17
Σ_(k=1) ^n k^3 =((n^2 (n+1)^2 )/4)  10^3  + 11^3  + 12^3  + ... + 20^3   =Σ_(k=1) ^(20) k^3 −Σ_(k=1) ^9 k^3   =((20^2 ×21^2 −9^2 ×10^2 )/4)  =((10^2 (2^2 ×21^2 −9^2 ))/4)  =25×(2×21+9)×(2×21−9)  =25×51×33  =42075
nk=1k3=n2(n+1)24103+113+123++203=20k=1k39k=1k3=202×21292×1024=102(22×21292)4=25×(2×21+9)×(2×219)=25×51×33=42075
Commented by Joel576 last updated on 14/Apr/17
thank you very much
thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *