Menu Close

1000-2-999-2-998-2-997-2-2-2-1-2-Please-the-question-says-simplify-




Question Number 6885 by Tawakalitu. last updated on 01/Aug/16
(1000)^2  − (999)^2  + (998)^2  − (997)^2 + ......... + 2^2  − 1^2  = ?    Please the question says simplify
(1000)2(999)2+(998)2(997)2++2212=?Pleasethequestionsayssimplify
Answered by sou1618 last updated on 01/Aug/16
S=(1000^2 −999^2 )+...+{(2k)^2 −(2k−1)^2 }+...+(2^2 −1^2 )  1<=k<=500  S=(1000+999)(1000−999)+...+(2k+2k−1)(2k−2k+1)+...+(2+1)(2−1)  S=1999×1+...+(4k−1)×1+...+3×1  S=1999+1995+...+(4k−1)+...+7+3  (i)  S=Σ_(k=1) ^(500) (4k−1)  S=2×500×(500+1)−500  S=501000−500  S=500500    (ii)  S=(1999+3)+(1995+7)+......+(1003+999)   { ((1003=4×251−1)),((999=4×250−1)) :}  S=2002+2002+....+2002(250times)   { ((1999=4×500−1)),((1003=4×251−1)) :}  S=2002×250  S=500500
S=(100029992)++{(2k)2(2k1)2}++(2212)1<=k<=500S=(1000+999)(1000999)++(2k+2k1)(2k2k+1)++(2+1)(21)S=1999×1++(4k1)×1++3×1S=1999+1995++(4k1)++7+3(i)S=500k=1(4k1)S=2×500×(500+1)500S=501000500S=500500(ii)S=(1999+3)+(1995+7)++(1003+999){1003=4×2511999=4×2501S=2002+2002+.+2002(250times){1999=4×50011003=4×2511S=2002×250S=500500
Commented by sou1618 last updated on 01/Aug/16
(iii)other way  S=Σ_(k=1) ^(500) (2k)^2 −Σ_(k=1) ^(500) (2k−1)^2   S=Σ_(k=1) ^(500) {4k^2 −(4k^2 −4k+1)}  S=Σ_(k=1) ^(500) (4k−1)  S=2×500×501−500  S=500500
(iii)otherwayS=500k=1(2k)2500k=1(2k1)2S=500k=1{4k2(4k24k+1)}S=500k=1(4k1)S=2×500×501500S=500500
Commented by Tawakalitu. last updated on 01/Aug/16
Wow thanks so much
Wowthankssomuch
Commented by Tawakalitu. last updated on 01/Aug/16
I really appreciate
Ireallyappreciate

Leave a Reply

Your email address will not be published. Required fields are marked *