Question Number 141431 by mohammad17 last updated on 18/May/21
$$\mathrm{2}\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{2}} \left({x}+\mathrm{2}{y}\right)^{\mathrm{8}} \:{dxdy} \\ $$
Answered by mathmax by abdo last updated on 19/May/21
$$\Phi=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \:\int_{\mathrm{0}} ^{\mathrm{2}} \:\:\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{8}} \:\mathrm{C}_{\mathrm{8}} ^{\mathrm{k}} \:\mathrm{x}^{\mathrm{k}} \left(\mathrm{2y}\right)^{\mathrm{8}−\mathrm{k}} \:\mathrm{dx}\:\mathrm{dy} \\ $$$$=\mathrm{2}\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{8}} \mathrm{C}_{\mathrm{8}} ^{\mathrm{k}} \:\mathrm{2}^{\mathrm{8}−\mathrm{k}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{y}^{\mathrm{8}−\mathrm{k}} \:\mathrm{dy}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{k}} \:\mathrm{dx} \\ $$$$=\mathrm{2}\:\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{8}} \:\mathrm{C}_{\mathrm{8}} ^{\mathrm{k}} \:\mathrm{2}^{\mathrm{8}−\mathrm{k}} \:×\frac{\mathrm{1}}{\mathrm{7}−\mathrm{k}}×\frac{\mathrm{1}}{\mathrm{k}+\mathrm{1}} \\ $$$$=\mathrm{2}\:\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{8}} \:\frac{\mathrm{C}_{\mathrm{8}} ^{\mathrm{k}} }{\left(\mathrm{7}−\mathrm{k}\right)\left(\mathrm{k}+\mathrm{1}\right)}\mathrm{2}^{\mathrm{8}−\mathrm{k}} \\ $$
Answered by mr W last updated on 19/May/21
$$\mathrm{2}\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{2}} \left({x}+\mathrm{2}{y}\right)^{\mathrm{8}} \:{dxdy} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left(\mathrm{2}+\mathrm{2}{y}\right)^{\mathrm{9}} −\left(\mathrm{0}+\mathrm{2}{y}\right)^{\mathrm{9}} }{\mathrm{9}}{dy} \\ $$$$=\frac{\left(\mathrm{2}+\mathrm{2}×\mathrm{1}\right)^{\mathrm{10}} −\left(\mathrm{0}+\mathrm{2}×\mathrm{0}\right)^{\mathrm{10}} }{\mathrm{9}×\mathrm{10}} \\ $$$$=\frac{\mathrm{4}^{\mathrm{10}} }{\mathrm{90}} \\ $$$$=\frac{\mathrm{4}^{\mathrm{9}} }{\mathrm{9}} \\ $$