Menu Close

2-log-0-5-2-x-x-log-0-5-x-gt-2-5-




Question Number 4615 by love math last updated on 14/Feb/16
2^(log_(0.5) ^2 x) +x^(log_(0.5) x) >2.5
2log0.52x+xlog0.5x>2.5
Answered by Yozzii last updated on 14/Feb/16
Rearranging the given inequality  leads to x^(log_(0.5) x) >2.5−2^(log_(0.5) ^2 x) .  Taking logaritms to base 0.5 on both  sides leads to log_(0.5) x^(log_(0.5) x) >log_(0.5) (2.5−2^(log_(0.5) ^2 x) ).  By the power rule⇒(log_(0.5) x)(log_(0.5) x)>log_(0.5) (2.5−2^(log_(0.5) ^2 x) )  ⇒log_(0.5) ^2 x>log_(0.5) (2.5−2^(log_(0.5) ^2 x) )  Let u=log_(0.5) ^2 x. ∴ u>log_(0.5) (2.5−2^u )  ⇒0.5^u >0.5^(log_(0.5) (2.5−2^u ))   (1/2^u )>(5/2)−2^u ⇒1>(5/2)×2^u −(2^u )^2   (2^u )^2 −(5/2)(2^u )+1>0  2(2^u )^2 −5(2^u )+2>0  (2(2^u )−1)(2^u −2)>0        (∗)  (∗) is true iff (1) 2^(u+1) −1>0 and 2^u −2>0  or (2) 2^(u+1) −1<0 and 2^u −2<0.    From (1) 2^(u+1) −1>0⇒u+1>0⇒u>−1  and 2^u −2>0⇒u>1. Hence,u>1.  Since u=log_(0.5) ^2 x⇒log_(0.5) ^2 x>1  (log_(0.5) x+1)(log_(0.5) x−1)>0  ⇒ (3) log_(0.5) x+1>0 and log_(0.5) x−1>0  or (4) log_(0.5) x+1<0 and log_(0.5) x−1<0.  From (3),x>0.5^(−1) =2 and x>0.5^1 =0.5  ∴ x>2.   From (4) 0<x<0.5^(−1) =2 and 0<x<0.5  ∴ 0<x<0.5.    From (2) 2^(u+1) −1<0⇒u+1<0⇒u<−1  and 2^u −2<0⇒u<1 ∴ u<−1. Since  u=log_(0.5) ^2 x⇒log_(0.5) ^2 x<−1. But for x∈R,  log_(0.5) ^2 x≮−1<0. ∴ for x∈R, (2) has no  solutions.     For real x, the solution set Υ of the   inequality given is Υ={x∈R∣0<x<1/2 or x>2}.
Rearrangingthegiveninequalityleadstoxlog0.5x>2.52log0.52x.Takinglogaritmstobase0.5onbothsidesleadstolog0.5xlog0.5x>log0.5(2.52log0.52x).Bythepowerrule(log0.5x)(log0.5x)>log0.5(2.52log0.52x)log0.52x>log0.5(2.52log0.52x)Letu=log0.52x.u>log0.5(2.52u)0.5u>0.5log0.5(2.52u)12u>522u1>52×2u(2u)2(2u)252(2u)+1>02(2u)25(2u)+2>0(2(2u)1)(2u2)>0()()istrueiff(1)2u+11>0and2u2>0or(2)2u+11<0and2u2<0.From(1)2u+11>0u+1>0u>1and2u2>0u>1.Hence,u>1.Sinceu=log0.52xlog0.52x>1(log0.5x+1)(log0.5x1)>0(3)log0.5x+1>0andlog0.5x1>0or(4)log0.5x+1<0andlog0.5x1<0.From(3),x>0.51=2andx>0.51=0.5x>2.From(4)0<x<0.51=2and0<x<0.50<x<0.5.From(2)2u+11<0u+1<0u<1and2u2<0u<1u<1.Sinceu=log0.52xlog0.52x<1.ButforxR,log0.52x1<0.forxR,(2)hasnosolutions.Forrealx,thesolutionsetΥoftheinequalitygivenisΥ={xR0<x<1/2orx>2}.

Leave a Reply

Your email address will not be published. Required fields are marked *