Menu Close

2-log-x-2-log-x-4-2-0-Determine-the-domain-of-x-and-find-the-value-of-x-




Question Number 4477 by love math last updated on 30/Jan/16
2 log (x−2)+log (x−4)^2 =0    Determine the domain of x and find the value of x.
2log(x2)+log(x4)2=0Determinethedomainofxandfindthevalueofx.
Answered by Rasheed Soomro last updated on 30/Jan/16
2 log (x−2)+log (x−4)^2 =0  2log(x−2)=−log(x−4)^2   log(x−2)^2 =log(x−4)^(−2)   (x−2)^2 =(x−4)^(−2)   (x−2)^2 =((1/(x−4)))^2   x−2=±(1/(x−4))  (x−2)(x−4)=±1  x^2 −6x+8−1=0  ∣ x^2 −6x+8+1=0  x^2 −6x+7=0   ∣  x^2 −6x+9=0  x=((−(−6)±(√((−6)^2 −4(1)(7))))/2)  ∣  (x−3)^2 =0  x=((6±(√8))/2)=3±(√2)       ∣   x=3  Domain of equation :{3,3±(√2)}
2log(x2)+log(x4)2=02log(x2)=log(x4)2log(x2)2=log(x4)2(x2)2=(x4)2(x2)2=(1x4)2x2=±1x4(x2)(x4)=±1x26x+81=0x26x+8+1=0x26x+7=0x26x+9=0x=(6)±(6)24(1)(7)2(x3)2=0x=6±82=3±2x=3Domainofequation:{3,3±2}

Leave a Reply

Your email address will not be published. Required fields are marked *