Menu Close

2-pi-sec-2-x-tan-2-x-dx-




Question Number 8807 by tawakalitu last updated on 28/Oct/16
∫_2 ^π (sec^2 x − tan^2 x) dx
$$\int_{\mathrm{2}} ^{\pi} \left(\mathrm{sec}^{\mathrm{2}} \mathrm{x}\:−\:\mathrm{tan}^{\mathrm{2}} \mathrm{x}\right)\:\mathrm{dx} \\ $$
Answered by ridwan balatif last updated on 29/Oct/16
remember: tan^2 x=sec^2 x−1⇔sec^2 x−tan^2 x=1  ∫_2 ^π (sec^2 x−tan^2 x) dx=∫_2 ^π 1 dx=x∣_2 ^π =π−2
$$\mathrm{remember}:\:\mathrm{tan}^{\mathrm{2}} \mathrm{x}=\mathrm{sec}^{\mathrm{2}} \mathrm{x}−\mathrm{1}\Leftrightarrow\mathrm{sec}^{\mathrm{2}} \mathrm{x}−\mathrm{tan}^{\mathrm{2}} \mathrm{x}=\mathrm{1} \\ $$$$\underset{\mathrm{2}} {\overset{\pi} {\int}}\left(\mathrm{sec}^{\mathrm{2}} \mathrm{x}−\mathrm{tan}^{\mathrm{2}} \mathrm{x}\right)\:\mathrm{dx}=\underset{\mathrm{2}} {\overset{\pi} {\int}}\mathrm{1}\:\mathrm{dx}=\mathrm{x}\underset{\mathrm{2}} {\overset{\pi} {\mid}}=\pi−\mathrm{2} \\ $$
Commented by tawakalitu last updated on 29/Oct/16
Thank you sir. God bless you.
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *