Question Number 6021 by sanusihammed last updated on 10/Jun/16
$$\mathrm{2}^{{x}} \:+\:\mathrm{2}{x}\:=\:\mathrm{8}\: \\ $$$$ \\ $$$${find}\:{the}\:{value}\:{of}\:{x} \\ $$
Commented by Yozzii last updated on 10/Jun/16
$${x}=\mathrm{2} \\ $$$$\mathrm{2}^{\mathrm{2}} +\mathrm{2}×\mathrm{2}=\mathrm{4}+\mathrm{4}=\mathrm{8} \\ $$
Commented by sanusihammed last updated on 10/Jun/16
$$ \\ $$$${i}\:{think}\:{that}\:{is}\:{trial}\:{and}\:{error} \\ $$
Commented by Yozzii last updated on 10/Jun/16
$${Yes}\:{it}\:{is}. \\ $$
Answered by prakash jain last updated on 10/Jun/16
$${x}={u}+\mathrm{4} \\ $$$$\mathrm{2}^{{u}+\mathrm{4}} +\mathrm{2}\left({u}+\mathrm{4}\right)=\mathrm{8} \\ $$$$\mathrm{2}^{{u}+\mathrm{4}} +\mathrm{2}{u}+\mathrm{8}=\mathrm{8} \\ $$$$\mathrm{8}\centerdot\mathrm{2}^{{u}} +{u}=\mathrm{0} \\ $$$$\mathrm{8}\centerdot\mathrm{2}^{{u}} =−{u} \\ $$$$\mathrm{8}=−\frac{{u}}{\mathrm{2}^{{u}} }=−\frac{{u}}{{e}^{{u}\mathrm{ln}\:\mathrm{2}} } \\ $$$$\mathrm{8}=−{ue}^{−{u}\mathrm{ln}\:\mathrm{2}} \\ $$$$\mathrm{8ln}\:\mathrm{2}=−{u}\centerdot\mathrm{ln}\:\mathrm{2}\centerdot{e}^{−{u}\mathrm{ln}\:\mathrm{2}} \\ $$$${W}\left(\mathrm{8ln}\:\mathrm{2}\right)=−{u}\mathrm{ln}\:\mathrm{2} \\ $$$$−{u}=\frac{{W}\left(\mathrm{8ln}\:\mathrm{2}\right)}{\mathrm{ln}\:\mathrm{2}} \\ $$$$\left(\mathrm{4}−{x}\right)=\frac{{W}\left(\mathrm{8ln}\:\mathrm{2}\right)}{\mathrm{ln}\:\mathrm{2}} \\ $$$${x}=\mathrm{4}−\frac{{W}\left(\mathrm{8ln}\:\mathrm{2}\right)}{\mathrm{ln}\:\mathrm{2}} \\ $$$${W}\:\mathrm{is}\:\mathrm{log}\:\mathrm{product}\:\mathrm{function}. \\ $$
Commented by Rasheed Soomro last updated on 10/Jun/16
$${Can}\:{we}\:{calculate}\:{further} \\ $$$${x}=\mathrm{4}−\frac{{W}\left(\mathrm{8ln}\:\mathrm{2}\right)}{\mathrm{ln}\:\mathrm{2}}=\mathrm{2} \\ $$$${Because}\:\mathrm{2}\:{is}\:{obvious}\:{root}\:{of}\:{the}\:{given} \\ $$$${equation}. \\ $$
Commented by sanusihammed last updated on 10/Jun/16
$${Intdrdsting}. \\ $$$${please}\:{i}\:{dont}\:{know}\:{what}\:{is}\:{product}\:{log}….. \\ $$$${sorry}\:{for}\:{asking}\:{too}\:{much}\:{question}. \\ $$$${i}\:{will}\:{love}\:{to}\:{know}\:{how}\:{the}\:{product}\:{log}\:{is}\:{express} \\ $$
Commented by FilupSmith last updated on 10/Jun/16
$$\mathrm{Wikipedia}\:\mathrm{has}\:\mathrm{a}\:\mathrm{lot}\:\mathrm{of}\:\mathrm{information} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{product}\:\mathrm{log}.\:\mathrm{So}\:\mathrm{does}\:\mathrm{wolfram}\:\mathrm{alpha} \\ $$$$ \\ $$$$\mathrm{a}\:\mathrm{good}\:\mathrm{old}\:\mathrm{google}\:\mathrm{search}\:\mathrm{is}\:\mathrm{your}\:\mathrm{best} \\ $$$$\left.\mathrm{friend}!\::\right) \\ $$
Commented by prakash jain last updated on 10/Jun/16
$$\mathrm{Rasheed}'\mathrm{s}\:\mathrm{comment} \\ $$$${W}\left(\mathrm{8ln}\:\mathrm{2}\right)=\mathrm{2ln}\:\mathrm{2}\:\left(\mathrm{Wolfram}\:\mathrm{alpha}\right) \\ $$$$\mathrm{so}\:{x}=\mathrm{2} \\ $$
Commented by Rasheed Soomro last updated on 11/Jun/16
$$\mathfrak{THANKS}! \\ $$