Menu Close

2-x-4x-Solution-2-x-4x-This-can-be-re-write-as-1-1-x-4x-Using-combination-to-epand-from-the-identity-1-x-n-1-nx-n-n-1-2-x-2-n-n-1-n-2-3-x-3-nCrx-r-Therefore




Question Number 5764 by sanusihammed last updated on 26/May/16
2^x  = 4x  Solution  2^x  = 4x  This can be re write as  (1+1)^x  = 4x  Using combination to epand  from the identity.  (1+x)^n  = 1+nx+((n(n−1))/(2!))x^2 +((n(n−1)(n−2))/(3!))x^3 +....+nCrx^(r )    Therefore.  (1+1)^x  = 4x  1+x+((x(x−1))/(2!))(1^2 )+((x(x−1)(x−2))/(3!))(1^3 )+......+1 = 4x  ignore the continuity (what rule is ..... ignore the +...+) is it  linear approximation  1+x+((x^2 −x)/(2×1))+(((x^2 −x)(x−2))/(3×2×1))+1 = 4x  1+x+((x^2 −x)/2)+((x^3 −2x^2 −x^2 +2x)/6)+1 = 4x  1+x+((x^2 −x)/2)+((x^3 −3x^2 +2x)/6)+1 = 4x  Multiply through by 6   6+6x+3(x^2 −x)+x^3 −3x^2 +2x+6 = 24x  12+6x+3x^2 −3x+x^3 −3x^2 +2x+6 = 24x  12+5x+x^3  = 24x  12+5x+x^3 −24x = 0  x^3 −19x+12 = 0  Factorize  x^3 −4x^2 +4x^2 −16x−3x+12 = 0  (x^3 −4x^2 )+(4x^2 −16x)−(3x+12) = 0  x^2 (x−4)+4x(x−4)−3(x−4) = 0  Factor out (x−4)  (x−4)(x^2 +4x−3) = 0  x−4 = 0 or x^( 2) +4x−3 = 0  x = 4 or x = 0.6458 or x = −4.6458  The only real solution is x = 4  Therefore  x = 4    DONE!    Please confirm the solution. is it correct or please corect it or  show me alternative.  This is my trial.  Thanks.
2x=4xSolution2x=4xThiscanberewriteas(1+1)x=4xUsingcombinationtoepandfromtheidentity.(1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3+.+nCrxrTherefore.(1+1)x=4x1+x+x(x1)2!(12)+x(x1)(x2)3!(13)++1=4xignorethecontinuity(whatruleis..ignorethe++)isitlinearapproximation1+x+x2x2×1+(x2x)(x2)3×2×1+1=4x1+x+x2x2+x32x2x2+2x6+1=4x1+x+x2x2+x33x2+2x6+1=4xMultiplythroughby66+6x+3(x2x)+x33x2+2x+6=24x12+6x+3x23x+x33x2+2x+6=24x12+5x+x3=24x12+5x+x324x=0x319x+12=0Factorizex34x2+4x216x3x+12=0(x34x2)+(4x216x)(3x+12)=0x2(x4)+4x(x4)3(x4)=0Factorout(x4)(x4)(x2+4x3)=0x4=0orx2+4x3=0x=4orx=0.6458orx=4.6458Theonlyrealsolutionisx=4Thereforex=4DONE!Pleaseconfirmthesolution.isitcorrectorpleasecorectitorshowmealternative.Thisismytrial.Thanks.
Commented by prakash jain last updated on 26/May/16
(1+x)^n =Σ_(i=0) ^n ^n C_i x^i  only if n∈Z
(1+x)n=ni=0nCixionlyifnZ

Leave a Reply

Your email address will not be published. Required fields are marked *