Question Number 5023 by love math last updated on 03/Apr/16
$$\frac{\mathrm{25}^{−\mathrm{1}} +\:{log}_{\mathrm{2}} {a}^{−\mathrm{1}} }{\mathrm{5}^{−\mathrm{1}} −{log}_{\mathrm{4}} {a}}−\frac{\mathrm{3}}{{a}^{−\mathrm{0}.\mathrm{5}} } \\ $$$$ \\ $$$${Simplify} \\ $$
Answered by Rasheed Soomro last updated on 05/Apr/16
$$\frac{\mathrm{25}^{−\mathrm{1}} +\:{log}_{\mathrm{2}} {a}^{−\mathrm{1}} }{\mathrm{5}^{−\mathrm{1}} −{log}_{\mathrm{4}} {a}}−\frac{\mathrm{3}}{{a}^{−\mathrm{0}.\mathrm{5}} } \\ $$$${log}_{\mathrm{2}} {a}^{−\mathrm{1}} =\frac{{log}_{\mathrm{5}} {a}^{−\mathrm{1}} }{{log}_{\mathrm{5}} \mathrm{2}}\:\:\: \\ $$$${log}_{\mathrm{4}} {a}=\frac{{log}_{\mathrm{5}} {a}}{{log}_{\mathrm{5}} \mathrm{4}} \\ $$$$\mathrm{25}^{−\mathrm{1}} ={log}_{\mathrm{5}} {x}\Rightarrow{x}=\mathrm{5}^{\mathrm{25}^{−\mathrm{1}} } \\ $$$$\mathrm{5}^{−\mathrm{1}} ={log}_{\mathrm{5}} {x}\Rightarrow{x}=\mathrm{5}^{\mathrm{5}^{−\mathrm{1}} } \\ $$$$\frac{\mathrm{25}^{−\mathrm{1}} +\:{log}_{\mathrm{2}} {a}^{−\mathrm{1}} }{\mathrm{5}^{−\mathrm{1}} −{log}_{\mathrm{4}} {a}}−\frac{\mathrm{3}}{{a}^{−\mathrm{0}.\mathrm{5}} }=\frac{{log}_{\mathrm{5}} \left(\mathrm{5}^{\mathrm{25}^{−\mathrm{1}} } \right)+\frac{{log}_{\mathrm{5}} {a}^{−\mathrm{1}} }{{log}_{\mathrm{5}} \mathrm{2}}}{{log}_{\mathrm{5}} \left(\mathrm{5}^{\mathrm{5}^{−\mathrm{1}} } \right)−\frac{{log}_{\mathrm{5}} {a}}{{log}_{\mathrm{5}} \mathrm{4}}}−\frac{\mathrm{3}}{{a}^{−\mathrm{0}.\mathrm{5}} } \\ $$$$=\frac{{log}_{\mathrm{5}} \left(\mathrm{5}^{\mathrm{25}^{−\mathrm{1}} } \right){log}_{\mathrm{5}} \mathrm{2}+{log}_{\mathrm{5}} {a}^{−\mathrm{1}} }{{log}_{\mathrm{5}} \mathrm{2}}×\frac{{log}_{\mathrm{5}} \mathrm{4}}{{log}_{\mathrm{5}} \left(\mathrm{5}^{\mathrm{5}^{−\mathrm{1}} } \right){log}_{\mathrm{5}} \mathrm{4}−{log}_{\mathrm{5}} {a}}−\frac{\mathrm{3}}{{a}^{−\mathrm{0}.\mathrm{5}} } \\ $$$$\frac{{log}_{\mathrm{5}} \left(\mathrm{5}^{\mathrm{25}^{−{log}_{\mathrm{5}} \mathrm{2}} } \right)+{log}_{\mathrm{5}} {a}^{−\mathrm{1}} }{{log}_{\mathrm{5}} \left(\mathrm{5}^{\mathrm{5}^{−{log}_{\mathrm{5}} ^{} \mathrm{4}} } \right)−{log}_{\mathrm{5}} {a}}×\frac{{log}_{\mathrm{5}} \mathrm{4}}{{log}_{\mathrm{5}} \mathrm{2}}−\frac{\mathrm{3}}{{a}^{−\mathrm{0}.\mathrm{5}} } \\ $$$$\frac{{log}_{\mathrm{5}} \left(\mathrm{5}^{\mathrm{25}^{−{log}_{\mathrm{5}} \mathrm{2}} } ×{a}^{−\mathrm{1}} \right)}{{log}_{\mathrm{5}} \left(\mathrm{5}^{\mathrm{5}^{−{log}_{\mathrm{5}} ^{} \mathrm{4}} } \boldsymbol{\div}{log}_{\mathrm{5}} {a}\right)}×\frac{{log}_{\mathrm{5}} \mathrm{4}}{{log}_{\mathrm{5}} \mathrm{2}}−\frac{\mathrm{3}}{{a}^{−\mathrm{0}.\mathrm{5}} } \\ $$$$\mathrm{Too}\:\mathrm{complicated},\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{continue}. \\ $$
Answered by Rasheed Soomro last updated on 05/Apr/16
$$\frac{\mathrm{25}^{−\mathrm{1}} +\:{log}_{\mathrm{2}} {a}^{−\mathrm{1}} }{\mathrm{5}^{−\mathrm{1}} −{log}_{\mathrm{4}} {a}}−\frac{\mathrm{3}}{{a}^{−\mathrm{0}.\mathrm{5}} } \\ $$$$\frac{\mathrm{1}−\mathrm{25}{log}_{\mathrm{2}} {a}}{\mathrm{25}}×\frac{\mathrm{5}}{\mathrm{1}−\mathrm{5}{log}_{\mathrm{4}} {a}}−\mathrm{3}\sqrt{{a}} \\ $$$$\frac{\mathrm{1}−\mathrm{25}{log}_{\mathrm{2}} {a}}{\mathrm{5}−\mathrm{25}{log}_{\mathrm{4}} {a}}−\mathrm{3}\sqrt{{a}} \\ $$$$\frac{\mathrm{1}−\mathrm{25}{log}_{\mathrm{2}} {a}}{\mathrm{5}−\mathrm{25}\left(\frac{{log}_{\mathrm{2}} {a}}{{log}_{\mathrm{2}} \mathrm{4}}\right)}−\mathrm{3}\sqrt{{a}} \\ $$$$\frac{\mathrm{1}−\mathrm{25}{log}_{\mathrm{2}} {a}}{\mathrm{5}−\mathrm{25}\left(\frac{{log}_{\mathrm{2}} {a}}{\mathrm{2}}\right)}−\mathrm{3}\sqrt{{a}} \\ $$$$\frac{\mathrm{1}−\mathrm{25}{log}_{\mathrm{2}} {a}}{\mathrm{5}−\frac{\mathrm{25}}{\mathrm{2}}{log}_{\mathrm{2}} {a}}−\mathrm{3}\sqrt{{a}} \\ $$$$ \\ $$