Question Number 12626 by @ANTARES_VY last updated on 27/Apr/17
$$\mathrm{2}\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\alpha}β\mathrm{3}\boldsymbol{\mathrm{sin}\alpha} \\ $$$$\boldsymbol{\mathrm{Find}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{best}}\:\:\boldsymbol{\mathrm{metaphore}} \\ $$
Commented by prakash jain last updated on 27/Apr/17
$$\mathrm{Are}\:\mathrm{u}\:\mathrm{using}\:\mathrm{google}\:\mathrm{translate}? \\ $$
Answered by ajfour last updated on 27/Apr/17
$$\mathrm{2}β\mathrm{3sin}\:\alphaβ\mathrm{2sin}\:^{\mathrm{2}} \alpha \\ $$$$=\mathrm{2}β\mathrm{4sin}\:\alpha+\mathrm{sin}\:\alphaβ\mathrm{2sin}\:^{\mathrm{2}} \alpha \\ $$$$=\left(\mathrm{1}β\mathrm{2sin}\:\alpha\right)\left(\mathrm{sin}\:\alpha+\mathrm{2}\right) \\ $$$${Also}\: \\ $$$$=\mathrm{2}β\mathrm{2}\left[\left(\mathrm{sin}\:\alpha+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} β\frac{\mathrm{9}}{\mathrm{16}}\right] \\ $$$$=\mathrm{2}+\frac{\mathrm{9}}{\mathrm{8}}β\mathrm{2}\left(\mathrm{sin}\:\alpha+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} \\ $$$$=\frac{\mathrm{25}}{\mathrm{8}}β\mathrm{2}\left(\mathrm{sin}\:\alpha+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} \:. \\ $$