Menu Close

2x-1-4-x-2-1-




Question Number 138863 by bramlexs22 last updated on 19/Apr/21
∣2x−1∣ ≤ (4/( (√(x+2)))) + 1
$$\mid\mathrm{2x}−\mathrm{1}\mid\:\leqslant\:\frac{\mathrm{4}}{\:\sqrt{\mathrm{x}+\mathrm{2}}}\:+\:\mathrm{1} \\ $$
Answered by lyubita last updated on 19/Apr/21
- 2 < x ≤ 2
$$-\:\mathrm{2}\:<\:{x}\:\leqslant\:\mathrm{2} \\ $$
Commented by bramlexs22 last updated on 19/Apr/21
by Geogebra
$$\mathrm{by}\:\mathrm{Geogebra} \\ $$
Commented by bramlexs22 last updated on 19/Apr/21
what this method?
$$\mathrm{what}\:\mathrm{this}\:\mathrm{method}? \\ $$
Answered by EDWIN88 last updated on 19/Apr/21
let (√(x+2)) = z ; x>−2  ⇒x=z^2 −2 ∧2x−1=2z^2 −5  (⋮) ∣2z^2 −5∣ ≤ (4/z)+1  ⇒z^2 (2z^2 −5)^2 ≤(z+4)^2   ⇒z^2 (4z^4 −20z^2 +25)−z^2 −8z−16≤0  ⇒4z^6 −20z^4 +24z^2 −16≤0  ⇒z^6 −5z^4 +6z^2 −4≤0  only z=2 is the root of inequality  ⇒z ≤ 2 ; x+2 ≤ 4 ; x ≤ 2  the solution x>−2 ∩ x≤ 2   ⇒ ∴ −2<x≤2
$$\mathrm{let}\:\sqrt{\mathrm{x}+\mathrm{2}}\:=\:\mathrm{z}\:;\:\mathrm{x}>−\mathrm{2} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{z}^{\mathrm{2}} −\mathrm{2}\:\wedge\mathrm{2x}−\mathrm{1}=\mathrm{2z}^{\mathrm{2}} −\mathrm{5} \\ $$$$\left(\vdots\right)\:\mid\mathrm{2z}^{\mathrm{2}} −\mathrm{5}\mid\:\leqslant\:\frac{\mathrm{4}}{\mathrm{z}}+\mathrm{1} \\ $$$$\Rightarrow\mathrm{z}^{\mathrm{2}} \left(\mathrm{2z}^{\mathrm{2}} −\mathrm{5}\right)^{\mathrm{2}} \leqslant\left(\mathrm{z}+\mathrm{4}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{z}^{\mathrm{2}} \left(\mathrm{4z}^{\mathrm{4}} −\mathrm{20z}^{\mathrm{2}} +\mathrm{25}\right)−\mathrm{z}^{\mathrm{2}} −\mathrm{8z}−\mathrm{16}\leqslant\mathrm{0} \\ $$$$\Rightarrow\mathrm{4z}^{\mathrm{6}} −\mathrm{20z}^{\mathrm{4}} +\mathrm{24z}^{\mathrm{2}} −\mathrm{16}\leqslant\mathrm{0} \\ $$$$\Rightarrow\mathrm{z}^{\mathrm{6}} −\mathrm{5z}^{\mathrm{4}} +\mathrm{6z}^{\mathrm{2}} −\mathrm{4}\leqslant\mathrm{0} \\ $$$$\mathrm{only}\:\mathrm{z}=\mathrm{2}\:\mathrm{is}\:\mathrm{the}\:\mathrm{root}\:\mathrm{of}\:\mathrm{inequality} \\ $$$$\Rightarrow\mathrm{z}\:\leqslant\:\mathrm{2}\:;\:\mathrm{x}+\mathrm{2}\:\leqslant\:\mathrm{4}\:;\:\mathrm{x}\:\leqslant\:\mathrm{2} \\ $$$$\mathrm{the}\:\mathrm{solution}\:\mathrm{x}>−\mathrm{2}\:\cap\:\mathrm{x}\leqslant\:\mathrm{2}\: \\ $$$$\Rightarrow\:\therefore\:−\mathrm{2}<\mathrm{x}\leqslant\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *