Menu Close

2x-2-1-x-4-dx-




Question Number 7030 by Tawakalitu. last updated on 07/Aug/16
∫ ((2x^2 )/( (√(1 − x^4 )))) dx
$$\int\:\frac{\mathrm{2}{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}\:−\:{x}^{\mathrm{4}} }}\:{dx}\: \\ $$
Answered by uchechukwu okorie favour last updated on 10/Aug/16
let u=(√(1−x^4 ))  (du/dx)=−((2x^3 )/( (√(1−x^4 ))))  (dx/du)=−((√(1−x^4 ))/(2x))  ⇒∫((2x^3 )/( (√(1−x^4 ))))dx = ∫((2x^3 )/( (√(1−x^4 )))).(dx/du).(du/dx).dx  ⇒∫((2x^3 )/( (√(1−x^4 ))))dx=∫((2x^3 )/( (√(1−x^4 )))).−((√(1−x^4 ))/(2x))                             =−((√(1−x^4 ))/x)∫(1/( (√(1−x^4 ))))                         =−((√(1−x^4 ))/x)In∣1−x^4 ∣
$${let}\:{u}=\sqrt{\mathrm{1}−{x}^{\mathrm{4}} } \\ $$$$\frac{{du}}{{dx}}=−\frac{\mathrm{2}{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }} \\ $$$$\frac{{dx}}{{du}}=−\frac{\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}{\mathrm{2}{x}} \\ $$$$\Rightarrow\int\frac{\mathrm{2}{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}{dx}\:=\:\int\frac{\mathrm{2}{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}.\frac{{dx}}{{du}}.\frac{{du}}{{dx}}.{dx} \\ $$$$\Rightarrow\int\frac{\mathrm{2}{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}{dx}=\int\frac{\mathrm{2}{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}.−\frac{\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}{\mathrm{2}{x}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−\frac{\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}{{x}}\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−\frac{\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}{{x}}{In}\mid\mathrm{1}−{x}^{\mathrm{4}} \mid \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *