Menu Close

3-3x-x-2-9-gt-0-




Question Number 4524 by love math last updated on 05/Feb/16
3^(3x) +x^2 −9>0
$$\mathrm{3}^{\mathrm{3}{x}} +{x}^{\mathrm{2}} −\mathrm{9}>\mathrm{0} \\ $$
Commented by Yozzii last updated on 05/Feb/16
27^x >9−x^2    (∗)  (∗) is true for 9−x^2 ≤0⇒x^2 ≤9  ⇒∣x∣≥3. 27^x >0 ∀x∈R while 9−x^2 ≤0  for ∣x∣≥3.
$$\mathrm{27}^{{x}} >\mathrm{9}−{x}^{\mathrm{2}} \:\:\:\left(\ast\right) \\ $$$$\left(\ast\right)\:{is}\:{true}\:{for}\:\mathrm{9}−{x}^{\mathrm{2}} \leqslant\mathrm{0}\Rightarrow{x}^{\mathrm{2}} \leqslant\mathrm{9} \\ $$$$\Rightarrow\mid{x}\mid\geqslant\mathrm{3}.\:\mathrm{27}^{{x}} >\mathrm{0}\:\forall{x}\in\mathbb{R}\:{while}\:\mathrm{9}−{x}^{\mathrm{2}} \leqslant\mathrm{0} \\ $$$${for}\:\mid{x}\mid\geqslant\mathrm{3}.\: \\ $$$$ \\ $$$$ \\ $$
Answered by Yozzii last updated on 05/Feb/16
Commented by Yozzii last updated on 05/Feb/16
This image contains the graphs of the  functions f(x)=27^x  and g(x)=9−x^2 .  f(x)=27^x  is the white graph while  g(x)=9−x^2  is the blue graph. The   inequality is asking about the set of  values of x for which f(x)>g(x).
$${This}\:{image}\:{contains}\:{the}\:{graphs}\:{of}\:{the} \\ $$$${functions}\:{f}\left({x}\right)=\mathrm{27}^{{x}} \:{and}\:{g}\left({x}\right)=\mathrm{9}−{x}^{\mathrm{2}} . \\ $$$${f}\left({x}\right)=\mathrm{27}^{{x}} \:{is}\:{the}\:{white}\:{graph}\:{while} \\ $$$${g}\left({x}\right)=\mathrm{9}−{x}^{\mathrm{2}} \:{is}\:{the}\:{blue}\:{graph}.\:{The}\: \\ $$$${inequality}\:{is}\:{asking}\:{about}\:{the}\:{set}\:{of} \\ $$$${values}\:{of}\:{x}\:{for}\:{which}\:{f}\left({x}\right)>{g}\left({x}\right). \\ $$$$ \\ $$$$ \\ $$
Answered by Yozzii last updated on 05/Feb/16
Commented by Yozzii last updated on 05/Feb/16
This image shows the approximation  of the positive root of the equation  27^x =9−x^2  as being x=0.650. From  x>0.650, 27^x  increases while 9−x^2   decreases. Hence, 27^x >9−x^2  for   x>0.650  (approximately).
$${This}\:{image}\:{shows}\:{the}\:{approximation} \\ $$$${of}\:{the}\:{positive}\:{root}\:{of}\:{the}\:{equation} \\ $$$$\mathrm{27}^{{x}} =\mathrm{9}−{x}^{\mathrm{2}} \:{as}\:{being}\:{x}=\mathrm{0}.\mathrm{650}.\:{From} \\ $$$${x}>\mathrm{0}.\mathrm{650},\:\mathrm{27}^{{x}} \:{increases}\:{while}\:\mathrm{9}−{x}^{\mathrm{2}} \\ $$$${decreases}.\:{Hence},\:\mathrm{27}^{{x}} >\mathrm{9}−{x}^{\mathrm{2}} \:{for}\: \\ $$$${x}>\mathrm{0}.\mathrm{650}\:\:\left({approximately}\right). \\ $$$$ \\ $$
Commented by Yozzii last updated on 05/Feb/16
Let h(x)=27^x +x^2 −9.  ⇒h^′ (x)=27^x ln27+2x  By the Newton−Raphson method,  the (n+1)th approximation to the  root of the equation h(x)=0, given  that we have the nth approximation,  is found by the formula  x_(n+1) =x_n −((h(x_n ))/(h^′ (x_n ))).    x_(n+1) =((27^x_n  (x_n ln27−1)+x_n ^2 +9)/(27^x_n  ln27+2x_n ))  Let x_1 =0.650⇒x_2 ≈0.65199  ⇒x_3 ≈0.65199⇒x_4 =x_5 =...=x_n ≈0.65199  if we input successive values to 5 d.p.  ∴ x≈0.652 for the root so x>0.652   for f(x)>g(x).
$${Let}\:{h}\left({x}\right)=\mathrm{27}^{{x}} +{x}^{\mathrm{2}} −\mathrm{9}. \\ $$$$\Rightarrow{h}^{'} \left({x}\right)=\mathrm{27}^{{x}} {ln}\mathrm{27}+\mathrm{2}{x} \\ $$$${By}\:{the}\:{Newton}−{Raphson}\:{method}, \\ $$$${the}\:\left({n}+\mathrm{1}\right){th}\:{approximation}\:{to}\:{the} \\ $$$${root}\:{of}\:{the}\:{equation}\:{h}\left({x}\right)=\mathrm{0},\:{given} \\ $$$${that}\:{we}\:{have}\:{the}\:{nth}\:{approximation}, \\ $$$${is}\:{found}\:{by}\:{the}\:{formula} \\ $$$${x}_{{n}+\mathrm{1}} ={x}_{{n}} −\frac{{h}\left({x}_{{n}} \right)}{{h}^{'} \left({x}_{{n}} \right)}. \\ $$$$ \\ $$$${x}_{{n}+\mathrm{1}} =\frac{\mathrm{27}^{{x}_{{n}} } \left({x}_{{n}} {ln}\mathrm{27}−\mathrm{1}\right)+{x}_{{n}} ^{\mathrm{2}} +\mathrm{9}}{\mathrm{27}^{{x}_{{n}} } {ln}\mathrm{27}+\mathrm{2}{x}_{{n}} } \\ $$$${Let}\:{x}_{\mathrm{1}} =\mathrm{0}.\mathrm{650}\Rightarrow{x}_{\mathrm{2}} \approx\mathrm{0}.\mathrm{65199} \\ $$$$\Rightarrow{x}_{\mathrm{3}} \approx\mathrm{0}.\mathrm{65199}\Rightarrow{x}_{\mathrm{4}} ={x}_{\mathrm{5}} =…={x}_{{n}} \approx\mathrm{0}.\mathrm{65199} \\ $$$${if}\:{we}\:{input}\:{successive}\:{values}\:{to}\:\mathrm{5}\:{d}.{p}. \\ $$$$\therefore\:{x}\approx\mathrm{0}.\mathrm{652}\:{for}\:{the}\:{root}\:{so}\:{x}>\mathrm{0}.\mathrm{652}\: \\ $$$${for}\:{f}\left({x}\right)>{g}\left({x}\right). \\ $$
Answered by Yozzii last updated on 05/Feb/16
Commented by Yozzii last updated on 06/Feb/16
This image indicates an approximate  value of x for which f(x)>g(x) when  x<0. Descending from x≈−3.00  we have that f(x) remains non−negative  while g(x) falls below zero in value.  Therefore, f(x)>g(x) for x<−3.00  (approximately) as well.   In all, 27^x >9−x^2  for x>0.652 or  x<−3.00 (approximately).
$${This}\:{image}\:{indicates}\:{an}\:{approximate} \\ $$$${value}\:{of}\:{x}\:{for}\:{which}\:{f}\left({x}\right)>{g}\left({x}\right)\:{when} \\ $$$${x}<\mathrm{0}.\:{Descending}\:{from}\:{x}\approx−\mathrm{3}.\mathrm{00} \\ $$$${we}\:{have}\:{that}\:{f}\left({x}\right)\:{remains}\:{non}−{negative} \\ $$$${while}\:{g}\left({x}\right)\:{falls}\:{below}\:{zero}\:{in}\:{value}. \\ $$$${Therefore},\:{f}\left({x}\right)>{g}\left({x}\right)\:{for}\:{x}<−\mathrm{3}.\mathrm{00} \\ $$$$\left({approximately}\right)\:{as}\:{well}.\: \\ $$$${In}\:{all},\:\mathrm{27}^{{x}} >\mathrm{9}−{x}^{\mathrm{2}} \:{for}\:{x}>\mathrm{0}.\mathrm{652}\:{or} \\ $$$${x}<−\mathrm{3}.\mathrm{00}\:\left({approximately}\right).\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *