Menu Close

3-log-3x-4-4-log-4x-3-




Question Number 1343 by Rasheed Soomro last updated on 24/Jul/15
3^(log 3x+4) =4^(log 4x+3)
3log3x+4=4log4x+3
Answered by 112358 last updated on 24/Jul/15
Taking logs to base e on both sides  ⇒(log3x+4)ln3=(log4x+3)ln4  (logx+log3+4)ln3=(logx+log4+3)ln4  let p=logx   ∴ pln3+(log3+4)ln3=pln4+(log4+3)ln4  p(ln3−ln4)=(log4+3)ln4−(log3+4)ln3  p=(((log4+3)ln4−(log3+4)ln3)/(ln(3/4)))  Since p=logx  ⇒ logx=(((log4+3)ln4−(log3+4)ln3)/(ln(3/4)))  ∴ x=10^(((log4+3)ln4−(log3+4)ln3)/(ln(3/4)))   x≈0.549111367  Alternatively  Plotting the graph of   y=3^(log3x+4) −4^(log4x+3)  and reading off  its real root gives an approximate  solution for x satisfying the given  equation. If reading off does not  yield an accurate result other   numerical methods like Newton−  Raphson′s iterative formular,  linear interpolation or interval  bisection can give better estimations  if we define ∃x[0,1]∣y=0 .
Takinglogstobaseeonbothsides(log3x+4)ln3=(log4x+3)ln4(logx+log3+4)ln3=(logx+log4+3)ln4letp=logxpln3+(log3+4)ln3=pln4+(log4+3)ln4p(ln3ln4)=(log4+3)ln4(log3+4)ln3p=(log4+3)ln4(log3+4)ln3ln(3/4)Sincep=logxlogx=(log4+3)ln4(log3+4)ln3ln(3/4)x=10(log4+3)ln4(log3+4)ln3ln(3/4)x0.549111367AlternativelyPlottingthegraphofy=3log3x+44log4x+3andreadingoffitsrealrootgivesanapproximatesolutionforxsatisfyingthegivenequation.IfreadingoffdoesnotyieldanaccurateresultothernumericalmethodslikeNewtonRaphsonsiterativeformular,linearinterpolationorintervalbisectioncangivebetterestimationsifwedefinex[0,1]y=0.
Commented by Rasheed Ahmad last updated on 24/Jul/15
Good work!
Goodwork!

Leave a Reply

Your email address will not be published. Required fields are marked *