Menu Close

3xy-x-2-y-2-5-find-the-second-derivative-




Question Number 74723 by necxxx last updated on 29/Nov/19
3xy+x^2 +y^2 =5  find the second derivative
3xy+x2+y2=5findthesecondderivative
Commented by mathmax by abdo last updated on 29/Nov/19
y^2 +3xy+x^2 −5=0  Δ=(3x)^2 −4(x^2 −5) =9x^2 −4x^2 +20 =5x^2  +20 ⇒  y_1 (x)=((−3x+(√(5x^2 +20)))/2) and y_2 (x)=((−3x−(√(5x^2 +20)))/2)  y=y_1  ⇒y^′ (x)=−(3/2)+(1/2)×((10x)/(2(√(5x^2  +20)))) =−(3/2) +(5/2)(x/( (√(5x^2 +20))))  and y^((2)) (x)=(5/2){x (5x^2 +20)^(−(1/2)) }^((1))   =(5/2){(5x^2 +20)^(−(1/2))  +x ×(−(1/2)(10x)(5x^2  +29)^(−(3/2)) }  =(5/(2(√(5x^2 +20))))−((5x)/((5x^2 +20)(√(5x^2 +20))))  y=y_2     we follow the same method...
y2+3xy+x25=0Δ=(3x)24(x25)=9x24x2+20=5x2+20y1(x)=3x+5x2+202andy2(x)=3x5x2+202y=y1y(x)=32+12×10x25x2+20=32+52x5x2+20andy(2)(x)=52{x(5x2+20)12}(1)=52{(5x2+20)12+x×(12(10x)(5x2+29)32}=525x2+205x(5x2+20)5x2+20y=y2wefollowthesamemethod
Answered by Tanmay chaudhury last updated on 29/Nov/19
3x(dy/dx)+3y+2x+2y.(dy/dx)=0  [(dy/dx)=((−(3y+2x))/(3x+2y))  3x×(d^2 y/dx^2 )+3(dy/dx)+3(dy/dx)+2+2y.(d^2 y/dx^2 )+2((dy/dx))^2 =0  pls put value of (dy/dx) and calculate
3xdydx+3y+2x+2y.dydx=0[dydx=(3y+2x)3x+2y3x×d2ydx2+3dydx+3dydx+2+2y.d2ydx2+2(dydx)2=0plsputvalueofdydxandcalculate
Commented by necxxx last updated on 29/Nov/19
Thank you so much sir.
Thankyousomuchsir.

Leave a Reply

Your email address will not be published. Required fields are marked *