Menu Close

4xy-1-4-1-x-2-y-1-y-2-1-Resolver-elsistema-en-R-




Question Number 72488 by aliesam last updated on 29/Oct/19
 { ((4xy=1)),((4(√(1−x^2 )) ( y−(√(1−y^2 )) )=1)) :}    Resolver elsistema en R
{4xy=141x2(y1y2)=1ResolverelsistemaenR
Answered by behi83417@gmail.com last updated on 30/Oct/19
x=cost,y=cosr  ⇒ { ((4sint(cosr−sinr)=1)),((4cost.cosr=1)) :}  ⇒(1/((cosr−sinr)^2 ))+(1/(cos^2 r))=4⇒  ⇒cos^2 r+(cosr−sinr)^2 =4cos^2 r.(cosr−sinr)^2   ((1+cos2r)/2)+1−sin2r=2(1+cos2r)(1−sin2r)  ⇒1+cos2r+2−2sin2r=  4(1−sin2r+cos2r−sin2rcos2r)  ⇒3+cos2r−2sin2r=          4−4sin2r+4cos2r−4sin2rcos2r  ⇒3cos2r−2sin2r−4sin2rcos2r+1=0  [let:c=cos2r,s=sin2r]⇒  3c−2s−4sc+1=0  9c^2 +4s^2 −12sc=16s^2 c^2 −8sc+1  9c^2 +4s^2 −16s^2 c^2 =4sc+1  5c^2 −16c^2 (1−c^2 )+3=4sc  ⇒16c^4 −11c^2 +3=4sc  ⇒256c^8 +121c^4 +9−352c^6 +96c^4 −66c^2 =                         =16c^2 −16c^4   ⇒256c^8 −352c^6 +233c^4 −82c^2 +9=0  ⇒c=±0.42,±0.76  ⇒cos2r=±0.42,±0.76  ⇒ { ((cos2r=0.42⇒y=cosr=0.843)),((⇒x=(1/(4y))=(1/(4×0.843))=0.211)) :}  ⇒ { ((cos2r=−0.42⇒y=cosr=0.54)),((x=(1/(4y))=(1/(4×0.211))=0.053)) :}  ⇒ { ((cos2r=0.76⇒y=cosr=0.938)),((x=(1/(4y))=(1/(4×0.938))=0.235)) :}  ⇒ { ((cos2r=−0.76⇒y=cosr=0.346)),((x=(1/(4y))=(1/(4×0.346))=0.087)) :}
x=cost,y=cosr{4sint(cosrsinr)=14cost.cosr=11(cosrsinr)2+1cos2r=4cos2r+(cosrsinr)2=4cos2r.(cosrsinr)21+cos2r2+1sin2r=2(1+cos2r)(1sin2r)1+cos2r+22sin2r=4(1sin2r+cos2rsin2rcos2r)3+cos2r2sin2r=44sin2r+4cos2r4sin2rcos2r3cos2r2sin2r4sin2rcos2r+1=0[let:c=cos2r,s=sin2r]3c2s4sc+1=09c2+4s212sc=16s2c28sc+19c2+4s216s2c2=4sc+15c216c2(1c2)+3=4sc16c411c2+3=4sc256c8+121c4+9352c6+96c466c2==16c216c4256c8352c6+233c482c2+9=0c=±0.42,±0.76cos2r=±0.42,±0.76{cos2r=0.42y=cosr=0.843x=14y=14×0.843=0.211{cos2r=0.42y=cosr=0.54x=14y=14×0.211=0.053{cos2r=0.76y=cosr=0.938x=14y=14×0.938=0.235{cos2r=0.76y=cosr=0.346x=14y=14×0.346=0.087
Commented by aliesam last updated on 29/Oct/19
god bless you
godblessyou
Answered by MJS last updated on 29/Oct/19
(1)  ⇒ x=(1/(4y))  ⇒  (2)  (((√(16y^2 −1))(y−(√(1−y^2 ))))/(∣y∣))=1  (√(16y^2 −1))(y−(√(1−y^2 )))−∣y∣=0  ⇒ −1≤y≤−(1/4) ∨ (1/4)≤y≤1  we can only approximate (it leads to a  biquartic in y ⇒ quartic in (√y) which has  no “nice” solution)  the only solution I get is  x≈.302667; y≈.825989
(1)x=14y(2)16y21(y1y2)y=116y21(y1y2)y∣=01y1414y1wecanonlyapproximate(itleadstoabiquarticinyquarticinywhichhasnonicesolution)theonlysolutionIgetisx.302667;y.825989

Leave a Reply

Your email address will not be published. Required fields are marked *