Menu Close

5-x-1-x-4-dx-




Question Number 7961 by tawakalitu last updated on 25/Sep/16
∫((5 − x)/(1 + (√(x − 4)))) dx
$$\int\frac{\mathrm{5}\:−\:{x}}{\mathrm{1}\:+\:\sqrt{{x}\:−\:\mathrm{4}}}\:{dx} \\ $$
Answered by Yozzia last updated on 25/Sep/16
I=∫((5−x)/(1+(√(x−4))))dx  Let t=(√(x−4))⇒dt=(1/2)(x−4)^(−1/2) dx  dx=2(x−4)^(1/2) dt=2tdt  x=t^2 +4  ∴I=∫((5−4−t^2 )/(1+t))×2tdt=∫((2t(1−t^2 ))/(1+t))dt  I=∫((2t(1+t)(1−t))/(1+t))dt=∫2t(1−t)dt  I=∫(2t−2t^2 )dt=t^2 −(2/3)t^3 +c  I=x−4−(2/3)(x−4)^(3/2) +c=x−(2/3)(x−4)^(3/2) +D
$${I}=\int\frac{\mathrm{5}−{x}}{\mathrm{1}+\sqrt{{x}−\mathrm{4}}}{dx} \\ $$$${Let}\:{t}=\sqrt{{x}−\mathrm{4}}\Rightarrow{dt}=\frac{\mathrm{1}}{\mathrm{2}}\left({x}−\mathrm{4}\right)^{−\mathrm{1}/\mathrm{2}} {dx} \\ $$$${dx}=\mathrm{2}\left({x}−\mathrm{4}\right)^{\mathrm{1}/\mathrm{2}} {dt}=\mathrm{2}{tdt} \\ $$$${x}={t}^{\mathrm{2}} +\mathrm{4} \\ $$$$\therefore{I}=\int\frac{\mathrm{5}−\mathrm{4}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}}×\mathrm{2}{tdt}=\int\frac{\mathrm{2}{t}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}}{dt} \\ $$$${I}=\int\frac{\mathrm{2}{t}\left(\mathrm{1}+{t}\right)\left(\mathrm{1}−{t}\right)}{\mathrm{1}+{t}}{dt}=\int\mathrm{2}{t}\left(\mathrm{1}−{t}\right){dt} \\ $$$${I}=\int\left(\mathrm{2}{t}−\mathrm{2}{t}^{\mathrm{2}} \right){dt}={t}^{\mathrm{2}} −\frac{\mathrm{2}}{\mathrm{3}}{t}^{\mathrm{3}} +{c} \\ $$$${I}={x}−\mathrm{4}−\frac{\mathrm{2}}{\mathrm{3}}\left({x}−\mathrm{4}\right)^{\mathrm{3}/\mathrm{2}} +{c}={x}−\frac{\mathrm{2}}{\mathrm{3}}\left({x}−\mathrm{4}\right)^{\mathrm{3}/\mathrm{2}} +{D} \\ $$
Commented by tawakalitu last updated on 25/Sep/16
Thanks so much sir.
$${Thanks}\:{so}\:{much}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *