Menu Close

5-x-5-x-7-100-Find-the-value-of-x-




Question Number 6483 by sanusihammed last updated on 28/Jun/16
5^(√(x ))   −   5^((x − 7))   =  100    Find the value of x
5x5(x7)=100Findthevalueofx
Answered by Yozzii last updated on 29/Jun/16
5^(√x) −5^(−7) 5^x =100  Let u=(√x)⇒u^2 =x  ∴ 5^u −5^(−7) 5^u^2  =100  5^u −5^(u^2 −7) =100=2^2 5^2   For both l.h.s and r.h.s to be integers (100)   then u^2 −7≥0⇒u^2 ≥7. Try u=3 if u∈Z.  ⇒u^2 ≥7 and 5^3 −5^(9−7) =125−25=100.  So, x=u^2 =9 satisfies the given equation.  There possibly exists other values of  x since this does not provide proof of  x=9 as the only answer.  If l.h.s>0, as 100>0, we require that  u>u^2 −7  u^2 −u−7<0  (u−((1+(√(29)))/2))(u−((1−(√(29)))/2))<0  ⇒((1−(√(29)))/2)<u<((1+(√(29)))/2)  ((1−(√(29)))/2)<(√x)<((1+(√(29)))/2)  (((1−(√(29)))/2))^2 <x<(((1+(√(29)))/2))^2   4.807...<x<10.19...  5^(√x) −5^(x−7) =100.  5^((√x)+7−x) −1=2^2 5^(9−x)
5x575x=100Letu=xu2=x5u575u2=1005u5u27=100=2252Forbothl.h.sandr.h.stobeintegers(100)thenu270u27.Tryu=3ifuZ.u27and53597=12525=100.So,x=u2=9satisfiesthegivenequation.Therepossiblyexistsothervaluesofxsincethisdoesnotprovideproofofx=9astheonlyanswer.Ifl.h.s>0,as100>0,werequirethatu>u27u2u7<0(u1+292)(u1292)<01292<u<1+2921292<x<1+292(1292)2<x<(1+292)24.807<x<10.195x5x7=100.5x+7x1=2259x
Commented by sanusihammed last updated on 29/Jun/16
Thanks so much
Thankssomuch

Leave a Reply

Your email address will not be published. Required fields are marked *