Menu Close

6-dx-x-2-3x-2-7-4dx-x-2-2x-4-8-3-2xdx-x-2-64-9-3x-1-x-3-5x-2-6x-dx-10-4-3x-x-3-2x-dx-11-dx-x-3-2x-x-




Question Number 142149 by cesarL last updated on 27/May/21
6. ∫(dx/(x^2 −3x+2))  7. ∫((4dx)/(x^2 +2x+4))  8. ∫((3−2xdx)/(x^2 −64))  9. ∫((3x−1)/(x^3 +5x^2 +6x))dx  10. ∫((4−3x)/(x^3 −2x))dx  11. ∫(dx/(x^3 −2x+x))
6.dxx23x+27.4dxx2+2x+48.32xdxx2649.3x1x3+5x2+6xdx10.43xx32xdx11.dxx32x+x
Answered by mathmax by abdo last updated on 27/May/21
1) I=∫ (dx/(x^2 −3x+2))  x^2 −3x+2=0→Δ=9−8=1 ⇒x_1 =((3+1)/2)=2 and x_2 =((3−1)/2)=1 ⇒  I=∫ (dx/((x−2)(x−1)))=∫ ((1/(x−2))−(1/(x−1)))dx=log∣((x−2)/(x−1))∣ +C
1)I=dxx23x+2x23x+2=0Δ=98=1x1=3+12=2andx2=312=1I=dx(x2)(x1)=(1x21x1)dx=logx2x1+C
Answered by mathmax by abdo last updated on 27/May/21
2) J=∫ ((4dx)/(x^2  +2x+4)) ⇒J=∫ ((4dx)/((x+1)^2 +3))  =_(x+1=(√3)y)   ∫  ((4(√3)dy)/(3(y^2 +1))) =(4/( (√3))) arctany +C  =(4/( (√3)))arctan(((x+1)/( (√3)))) +C
2)J=4dxx2+2x+4J=4dx(x+1)2+3=x+1=3y43dy3(y2+1)=43arctany+C=43arctan(x+13)+C
Answered by mathmax by abdo last updated on 27/May/21
3) I=∫ ((−2x+3)/(x^2 −64))dx  F(x)=((−2x+3)/(x^2 −64))=((−2x+3)/((x−8)(x+8)))=(a/(x−8))+(b/(x+8))  a=((−16+3)/(16)) =−((13)/(16))  b=((16+3)/(−16)) =−((19)/(16)) ⇒F(x)=−((13)/(16(x−8)))−((19)/(16(x+8))) ⇒  I=−((13)/(16))log∣x−8∣−((19)/(16))log∣x+8∣ +C
3)I=2x+3x264dxF(x)=2x+3x264=2x+3(x8)(x+8)=ax8+bx+8a=16+316=1316b=16+316=1916F(x)=1316(x8)1916(x+8)I=1316logx81916logx+8+C
Answered by mathmax by abdo last updated on 27/May/21
5) J=∫ ((3x−1)/(x^3  +5x^2 +6x))dx  F(x)=((3x−1)/(x(x^2  +5x+6)))  x^2  +5x+6=0→Δ=25−24=1 ⇒x_1 =((−5+1)/2)=−2  x_2 =((−5−1)/2)=−3 ⇒F(x)=((3x−1)/(x(x+2)(x+3)))=(a/x)+(b/(x+2))+(c/(x+3))  a=−(1/6),b=((−7)/((−2)(1)))=(7/2),c=((−10)/((−3)(−1)))=−((10)/(3 )) ⇒  F(x)=−(1/(6x)) +(7/(2(x+2)))−((10)/(3(x+3))) ⇒J=∫ F(x)dx  =−(1/6)log∣x∣+(7/2)log∣x+2∣−((10)/3)log∣x+3∣ +C
5)J=3x1x3+5x2+6xdxF(x)=3x1x(x2+5x+6)x2+5x+6=0Δ=2524=1x1=5+12=2x2=512=3F(x)=3x1x(x+2)(x+3)=ax+bx+2+cx+3a=16,b=7(2)(1)=72,c=10(3)(1)=103F(x)=16x+72(x+2)103(x+3)J=F(x)dx=16logx+72logx+2103logx+3+C
Answered by Panacea last updated on 27/May/21
Q11.  ∫(dx/(x^3 −2x+x)) = ∫(dx/(x(x+1)(x−1)))    ∫(((−1)/x)+((1/2)/(x+1))+((1/2)/(x−1)))dx  ln(1/x)+(1/2)ln(x^2 −1)  ln((((√(x^2 −1))))/x)
Q11.dxx32x+x=dxx(x+1)(x1)(1x+1/2x+1+1/2x1)dxln1x+12ln(x21)ln(x21)x

Leave a Reply

Your email address will not be published. Required fields are marked *