Menu Close

8-log-6-x-17-log-x-6-7-




Question Number 66413 by hmamarques1994@gmail.com last updated on 14/Aug/19
     (√(8+log_6 (x!)))+(√(17−log_(x!) (6))) = 7
8+log6(x!)+17logx!(6)=7
Answered by MJS last updated on 14/Aug/19
x!∈{1, 2, 6, 24, 120,...} ⇒ it′s easier to try  ⇒ x=3    or put ln x! =t  (√(8+(t/(ln 6))))+(√(17−((ln 6)/t)))=7  (√a)+(√b)=c  a+2(√(ab))+b=c^2   2(√(ab))=c^2 −a−b  4ab=a^2 +b^2 +c^4 −2ac^2 −2ab−2bc^2   a^2 +b^2 +c^4 −2ac^2 −6ab−2bc^2 =0  ⇒  t^4 −116ln 6 t^3 +34ln^2  6 t^3 +80ln^3  6 t+ln^4  6 =0  (t−ln 6)(t^3 −115ln 6 t^2 −81ln^2  6 t−ln^3  6)=0  ⇒ t_1 =ln 6 ⇒ x_1 =3  the other solution give no values ∈N
x!{1,2,6,24,120,}itseasiertotryx=3orputlnx!=t8+tln6+17ln6t=7a+b=ca+2ab+b=c22ab=c2ab4ab=a2+b2+c42ac22ab2bc2a2+b2+c42ac26ab2bc2=0t4116ln6t3+34ln26t3+80ln36t+ln46=0(tln6)(t3115ln6t281ln26tln36)=0t1=ln6x1=3theothersolutiongivenovaluesN
Commented by hmamarques1994@gmai.com last updated on 14/Aug/19
    Good!
Good!

Leave a Reply

Your email address will not be published. Required fields are marked *