Menu Close

9-1-x-8-3-2-dx-




Question Number 136906 by leena12345 last updated on 27/Mar/21
∫_9 ^∞ (1/((x−8)^(3/2) ))dx
$$\underset{\mathrm{9}} {\overset{\infty} {\int}}\frac{\mathrm{1}}{\left({x}−\mathrm{8}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{dx} \\ $$
Answered by Dwaipayan Shikari last updated on 27/Mar/21
=−2[(x−8)^(−(1/2)) ]_9 ^∞ =−2(−1)=2
$$=−\mathrm{2}\left[\left({x}−\mathrm{8}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \right]_{\mathrm{9}} ^{\infty} =−\mathrm{2}\left(−\mathrm{1}\right)=\mathrm{2} \\ $$
Answered by Mathspace last updated on 27/Mar/21
I =∫_9 ^∞  (dx/((x−8)^(3/2) ))=_(x−8=t)  ∫_1 ^∞  (dt/t^(3/2) )  =∫_1 ^∞  t^(−(3/2))  dt =[(1/(−(3/2)+1))t^(−(3/2)+1) ]_1 ^∞   =[−2 t^(−(1/2)) ]_1 ^∞  =−2[(1/( (√t)))]_1 ^∞   =−2(−1) =2
$${I}\:=\int_{\mathrm{9}} ^{\infty} \:\frac{{dx}}{\left({x}−\mathrm{8}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }=_{{x}−\mathrm{8}={t}} \:\int_{\mathrm{1}} ^{\infty} \:\frac{{dt}}{{t}^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$$=\int_{\mathrm{1}} ^{\infty} \:{t}^{−\frac{\mathrm{3}}{\mathrm{2}}} \:{dt}\:=\left[\frac{\mathrm{1}}{−\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{1}}{t}^{−\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{1}} \right]_{\mathrm{1}} ^{\infty} \\ $$$$=\left[−\mathrm{2}\:{t}^{−\frac{\mathrm{1}}{\mathrm{2}}} \right]_{\mathrm{1}} ^{\infty} \:=−\mathrm{2}\left[\frac{\mathrm{1}}{\:\sqrt{{t}}}\right]_{\mathrm{1}} ^{\infty} \\ $$$$=−\mathrm{2}\left(−\mathrm{1}\right)\:=\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *