Menu Close

9-x-2-x-3-x-3-3-x-




Question Number 10289 by konen last updated on 02/Feb/17
((9−x^2 )/x)+3=((x−3)/3)⇒Σx=?
$$\frac{\mathrm{9}−\mathrm{x}^{\mathrm{2}} }{\mathrm{x}}+\mathrm{3}=\frac{\mathrm{x}−\mathrm{3}}{\mathrm{3}}\Rightarrow\Sigma\mathrm{x}=? \\ $$$$ \\ $$
Answered by ridwan balatif last updated on 02/Feb/17
((9−x^2 )/x)+3=((x−3)/3)  ((9−x^2 )/x)=((x−3)/3)−(9/3)  ((9−x^2 )/x)=((x−12)/3)  27−3x^2 =x^2 −12x  0=4x^2 −12x−27  Σx=((−(−12))/4)=3
$$\frac{\mathrm{9}−\mathrm{x}^{\mathrm{2}} }{\mathrm{x}}+\mathrm{3}=\frac{\mathrm{x}−\mathrm{3}}{\mathrm{3}} \\ $$$$\frac{\mathrm{9}−\mathrm{x}^{\mathrm{2}} }{\mathrm{x}}=\frac{\mathrm{x}−\mathrm{3}}{\mathrm{3}}−\frac{\mathrm{9}}{\mathrm{3}} \\ $$$$\frac{\mathrm{9}−\mathrm{x}^{\mathrm{2}} }{\mathrm{x}}=\frac{\mathrm{x}−\mathrm{12}}{\mathrm{3}} \\ $$$$\mathrm{27}−\mathrm{3x}^{\mathrm{2}} =\mathrm{x}^{\mathrm{2}} −\mathrm{12x} \\ $$$$\mathrm{0}=\mathrm{4x}^{\mathrm{2}} −\mathrm{12x}−\mathrm{27} \\ $$$$\Sigma\mathrm{x}=\frac{−\left(−\mathrm{12}\right)}{\mathrm{4}}=\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *